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Abstract: A method of spectral sensing based on compressive sensing is 
shown to have the potential to achieve high resolution in a compact device 
size. The random bases used in compressive sensing are created by the 
optical response of a set of different nanophotonic structures, such as 
photonic crystal slabs. The complex interferences in these nanostructures 
offer diverse spectral features suitable for compressive sensing. 
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Two of the most popular approaches for spectral sensing are monochromators and Fourier 
transform interferometers. Both require delicate instruments, which limit their use in low-cost 
applications and tough environments. The key limitation of these methods comes from the 
fact a long optical path is required to distinguish lights of slightly different wavelengths. 
Having a long optical path in the free space requires bulky instruments to maintain the 
alignment. An alternative way to achieve a long optical path in a compact dimension is to 
have light bounce back and forward many times between interfaces on an integrated optical 
chip. For example, optical resonators with high quality factors, where light path is enhanced 
by millions of times compared to the geometrical sizes of the resonators, have been used for 
spectral sensing [1,2]. However, the operation range is significantly limited by the number of 
resonators. Here we show a new method of spectral analysis based on the combination of 
compressive sensing [3] and nanophotonic structures, such as photonic crystal slabs [4]. 
Nanostructures with their abundant interfaces create much-enhanced optical paths, which is 
critical to achieve high spectral resolution. More importantly, unlike high-quality resonators 
whose spectral response consists of discrete narrow lines, the spectral responses of 
nanostructures are much more random with diverse features due to complex interferences. 
Such complex responses make it ideal to apply compressive sensing for efficient signal 
recovery. Using this multiplex method, the operational range is much expanded compared to 
the high-Q resonator method. These nanostructures can be easily fabricated on a chip and 
therefore can potentially lead to low-cost, high resolution and compact spectrometers. 

Before introducing our method, we first use a general mathematical description to briefly 
review conventional methods for spectral sensing. We consider an unknown signal light I(ω) 
passing through a spectral sensing instrument, whose response function can be described as 
R(ω,ρ). Here we use ρ to indicate a particular state of the instrument. A photodetector is used 
to measure the intensity of transmitted or reflected light d(ρ) as 

 ( ) ( ) ( , )d I R dρ ω ω ρ ω=   (1) 
Many measurements need to be performed while the instrument is tuned to different states 

ρ. The measurement d(ρ) can be understood as a transformation of signal I(ω). The recovery 
of signal I(ω) is done through an inverse transformation of the function d(ρ). Different 
spectral sensing methods use different response functions and accordingly different 
transformation methods. 

A monochromator uses a narrow-band filter based on a highly dispersive optical element, 
such as grating or prism (Fig. 1(a)). It separates lights of different wavelengths into different 
directions. A slit is used to selectively let through a narrow band of light around a central 
frequency ρ. The response function of an ideal monochromator is a delta function (Fig. 1(d)) 

 ( , ) ( )R ω ρ δ ω ρ= −  (2) 
Using Eqs. (1) and (2), we have d(ρ) = I(ρ). By measuring the intensity of transmitted light 

at each frequency ρ, the full spectrum can be obtained directly without an inverse 
transformation. The resolution of this method scales with the length between the grating and 
the slit. Since the detector only receives a small portion of signal’s energy at each 
measurement, the noise of detector has a great impact on the performance, making it difficult 
for infrared regime where the noise of detectors is typically large. 

The Fourier transform interferometer has complete different response functions. The 
signal light is split into two different paths and then is combined (Fig. 1(b)). Because of the 
interference, R(ω,ρ) becomes sinusoidal with respect to the frequency (Fig. 1(e)): 

 1 cos( )( , )
2

R
ρωω ρ +=  (3) 

where ρ is the time delay between two optical paths of the interferometer. Measurements 
obtained by using different time delay are equivalent to a Fourier transformation of the signal: 
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 1( ) ( )(1 cos( ))
2

d I dρ ω ρω ω= +  (4) 

The signal can be recovered through an inverse Fourier transformation. For each 
measurement, significant part of the signal’s energy is sent to the detector. Comparing to 
monochromator, Fourier interferometer has the Fellgett advantage with a better signal-to-
noise ratio for infrared light detection [5]. Similar to the monochromator method, the 
interferometer method also relies on a long and well-aligned optical path, again making it 
difficult to reduce the footprint without significantly sacrificing the performance. 

 
Fig. 1. Monochromator based on grating. b) Fourier transform interferometer. c) compressive 
sensing using nanophotonic structures. d), e), f) are response functions for a), b), c), 
respectively. 

In this paper, we show a spectral sensing method based on a completely different type of 
response function, which are obtained by passing the light through a set of different 
nanophotonic structures (Fig. 1(c)). The transmission and reflection spectra have randomly 
distributed spectral features (Fig. 1(f)), created by multiple reflections at interfaces of the 
nanostructure. Response functions at different states ρ are obtained by using different 
nanophotonic structures and are completely different from each other. They serve as the 
random bases used in compressive sensing. Before we further describe how to implement 
nanophotonic structures to generate such random response functions, we first describe the 
procedure of compressive sensing algorism that will be used to recover the signal I(ω) from 
the measurement d(ρ). 

In compressive sensing, the unknown signal is measured by projecting it to random bases. 
Typically, the number of measurements is smaller than the dimension of the unknown signal, 
which requires the signal to be recovered by finding solutions to an underdetermined linear 
system. It is particularly powerful for recovering sparse signals using less number of 
measurements than what the Nyquist-Shannon sampling theorem requires. Compressive 
sensing has been used for advanced imaging [6–12]. Here we use the basis pursuit method 
described in l1-magic program for compressive signal recovery [13]. 

To apply the compressive sensing algorism, we digitize all continuous spectral functions. 
The spectrum of the signal light is converted to a N-dimension vector ( )n nI I ω= , n = 1, …, N. 
The random bases, i.e. the response functions of nanostructures, are digitized as 

, ( , )m n n mR R ω ρ=  where m = 1, …, M, representing M different states of ρ, i.e. M different 

photonic structures. The measurement is then expressed as ,m m n nn
d R I= . Equation (1) is 

converted to a set of linear equations with N unknowns and M equations 
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 d RI=
 

 (5) 
It is always desirable to digitalize the unknown signal with a large N for fine resolution. 

Therefore, we focus on the case N > M and the linear equations are underdetermined. We can 
recover the unknown I


 by solving a convex program known as the basis pursuit [14] 

 1 1
( ) min subject toP I d RI=

 
    (6) 

where 
1 nI I=  is the l1 norm of the vector. 

Here we want to emphasize that the performance of compressive sensing relies on the 
randomness of the measuring bases. Therefore, response functions should have diverse 
spectral features with both broad and narrow line shapes. In addition, different response 
functions should have minimal correlation. This requirement is difficult to achieve using 
conventional interferometers consisting of bulk mirrors, lenses or gratings. On the other hand, 
complex interferences in nanostructures offer extremely rich amount of spectral features. 
More importantly, the enormous degrees of freedom in choosing the spatial parameters of the 
nanostructures allow us to create virtually unlimited number of different response functions. 

Next, we consider a specific example and use simulations to demonstrate the signal 
recovery based on compressive sensing. The nanophotonic structure consists of a photonic 
crystal slab (Fig. 2(a)). It has four layers from the top to the bottom: a 1 μm thick Si layer, a 
2.5 μm thick SiO2 layer, a 0.3 μm thick Si layer and a SiO2 substrate. A periodic lattice of air 
holes with a radius r = 0.9 μm are patterned in the top Si layer. The lattice constants in two 
orthogonal directions are p1 = 3 μm and p2 = 3.2 μm. The reflection spectrum (Fig. 2(b)) 
consists of diverse spectral features. Specifically, the vertical interfaces of air holes cause 
light to bounce in the lateral direction parallel to the slab. Such lateral propagation forms 
guided resonances [15], which greatly enhances the optical path with extremely high quality 
factors. In addition, the slab also has multiple interfaces along the direction normal to the slab. 
Light bounces between these interfaces, forming Fabry-Perot (FP) resonances. While these FP 
resonances do not have high quality factors, they play a unique role in enhancing the diversity 
of spectral features through Fano interference [16]. Fano interference is a result of the 
interference between guided resonance and direct background transmission. Unlike the 
symmetrical Lorentz response in regular optical cavities, Fano interference creates highly 
asymmetrical lineshapes [17,18]. The specific lineshapes depend on the phase and 
transmittance of the background transmission, which is modulated by the FP resonances. The 
combination of high-Q guided resonances and low-Q FP resonances through Fano 
interference leads to diverse spectral features. 

We consider a signal light in the spectral range from 1450 nm to 1550 nm. The spectrum 
is digitalized with 0.1 nm resolution, represented by N = 1001 unknowns to be determined. 
We use M = 400 different photonic crystal slabs by varying the radius of the holes and the 
lattice constants. The measurement consists of first passing signal light through each photonic 
crystal slab and then recording the reflected or transmitted intensity with a photodetector. 

These 400 structures have the same layer configuration but with different lattice 
structures. They are divided into two categories: rectangular and triangular lattices. We use 
different combinations of hole sizes and lattice constants to obtain different structures and 
response functions. p1 varies from 3 μm to 4 μm with a 0.1 μm step. For a given p1 value, p2 
varies from p1 to 4 μm with a 0.2 μm step. The diameter of holes ranges from 1.4 μm to p1 - 1 
μm with a 0.2 μm step. We obtain the reflection spectra by solving the Maxwell’s equations 
using rigorous coupled-wave analysis (RCWA). The simulations were performed with S4 
program [19]. A representative spectrum is shown in Fig. 2(b). 

To evaluate the performance, we start with an original signal and simulate the 
measurement processes using Eq. (1). The signal is recovered by feeding d(ρ) into the 
compressive sensing program implemented in l1-magic [13]. First, we use a signal consisting 
of a few continuous waves of different wavelengths. The spectrum consists of a few sharp 
spikes. We use such signal to evaluate the resolution. The distance between the frequencies of 

#219981 - $15.00 USD Received 29 Jul 2014; revised 12 Sep 2014; accepted 13 Sep 2014; published 13 Oct 2014
(C) 2014 OSA 20 October 2014 | Vol. 22,  No. 21 | DOI:10.1364/OE.22.025608 | OPTICS EXPRESS  25611



two continuous waves is 0.1 nm (as shown in Fig. 2(a)). Both the spectral position and the 
intensity of the signal are recovered well. The resolution is maximized when the spectral 
features of the response functions are sufficiently complex within certain frequency range. To 
improve the complexity of the spectra, we need to increase the optical path length, which can 
be achieved by increasing the number of structural interfaces and the thickness of the 
structures. For example, by increasing the thickness of top layer photonic crystal slab, or 
using two layer of different photonic crystal slabs, the resolution can be further improved. In 
addition, the number of response functions, the sparsity of the signal, and measurement noise 
also affect the resolution, as expected for any compressive sensing method. The second test 
signal consists of a broadband Lorentz signal with a 30nm bandwidth and a sharp peak on it. 
The third test signal combines 17 Lorentzian lines and the fourth combines 5 Gaussian lines. 
In all cases (Fig. 2(d), 2(e), 2(f)), the original signals are recovered with high fidelity. 

 
Fig. 2. a) Structure of photonic crystal slab. b) Representative reflection spectrum. c-f) 
Simulated signal recovery using compressive sensing algorithm and response functions of 
photonic crystal slabs for c) two discrete peakes d) two Lorentzian lines e) Multiple Lorentzian 
lines f) five Gaussian lines. The recovered signals (blue solid lines) agree well with the original 
(red dashed lines). 

Even though a large number of different photonic crystal slabs are used, we emphasize 
that these structures can be readily integrated on a chip. For visible and near-infrared spectral 
sensing, the required feature sizes can be readily defined by photolithography. The entire chip 
containing hundreds of different photonic crystal slabs can be as small as a few millimeters. 
The response functions of these nanostructures will be measured in the calibration process. 
Unknown signals can then be projected onto the chip and the measurement can be taken in 
parallel by an array of photodetectors. Alternatively, for weak signals, the measurement can 
be done sequentially as shown in Fig. 1(c). 

In additional to photonic crystal slabs, other nanostructures with complex interferences 
can also be used to generate random spectral features. For example, multilayer structures with 
layer thickness ranging from hundreds of nanometers to a few micrometers can generate 
complex and fine spectral features (Fig. 3). 

It is desirable to have minimal correlation among different response functions for the best 
performance of compressive sensing. Next, we will use the multilayer structure as an example 
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to evaluate the impact of correlation. We compare two types of multilayer structures, both 
consisting of 5 layers of silicon slabs with air spacing. For the first type (Fig. 3(a)), all 5 
layers have the same thicknesses of 15 μm. Different response functions are obtained by 
randomly varying the thicknesses of air spacing between layers in the range from 3 – 4 μm. 
Figure 3(b)-(e) show three representative spectra. By examining these spectra, we recognize 
that despite different detailed features, they all share a common pattern with a spectral 
periodicity determined by the FP resonance of the 15 μm thick Si slab. We can evaluate the 
correlation among different spectral response defined as 

 , 2 2

[(R( , ) (R( , )))(R( , ) (R( , )))]

[(R( , ) (R( , ))) ]E[(R( , ) (R( , ))) ]
i i j j

i j

i i j j

E E E
C

E E E

ω ρ ω ρ ω ρ ω ρ

ω ρ ω ρ ω ρ ω ρ

− −
=

− −
 (7) 

where E(.) represents the average. We obtain the response functions by simulating 400 
different structures using S4 [19]. The average correlation is 0.74, indicating significant 
similarity among different response functions. Using this set of response functions, we apply 
the compressive sensing algorithm for a signal consisting of 5 Lorentzian peaks (Fig. 3(e), red 
line). The peak positions and heights are barely recovered (Fig. 3(e), blue line). 

 
Fig. 3. The performance of the signal recovery depends on the implementation of the response 
functions. a) The multi-layer structure that generates the response functions have 5 Si layers 
(blue slabs) with the same thickness of 15μm. The distances are varied to obtain 400 different 
structures. b-d) three representative response functions. e) the recovered signal barely 
reproduces the original signal with a high noise level. f) Both the thicknesses and the distances 
between layers are varied. g-i) three representative response functions for f). j) the recovered 
signal agrees well with the original signal. 

For the second type of structures (Fig. 3(f)), we obtain 400 different response functions by 
changing both the thickness of and the spacing between Si layers. The spacing is randomly 
chosen between 3 to 4 μm and the thickness is randomly chosen between 10 nm to 15 μm. 
Figure 3(g)-(i) show representative spectra. The average correlation for 400 different response 
functions is 0.01, much smaller than that of the first type of structures. Figure 3(j) shows that 
the same signal now is very well recovered by this set of response functions. The comparison 
between these two types of structures shows the importance of correlation in designing 
photonic structures. 

Finally, we use the second type of multi-layer structure to evaluate the tolerance of 
measurement noise. Noise is inevitable in every step of experimental measurement. In the 
simulation, a random noise is added to the response functions. This noise could come from the 
experimental measurement of the response functions during the initial calibration of the 
instrument. Specifically, we have 

 '( , ) ( , ) ( , )R R Rω ρ ω ρ δ ω ρ= +  (8) 
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where ( , )R ω ρ is the true response function and '( , )R ω ρ  is the measured response function. 
( , )Rδ ω ρ  is the random noise. The measurement of the signal passing through the photonic 

structure also induces a noise given by d( )δ ρ  

 '( ) ( ) ( , ) d d( )d I Rρ ω ω ρ ω δ ρ= +  (9) 

'( )I ω is recovered by compressive sensing algorithm using measured data '( , )R ω ρ  and 
'( )d ρ . Figure 4(a) shows the case without noise. Figure 4(b) shows the noisy case with a 

signal-to-noise ratio of 40dB, e.g. the ratios between Rδ and R and between dδ and d. In both 
cases, '( )I ω  (blue solid line) agrees well with ( )I ω  (red dashed line). The noise tolerance 
highly depends the algorithm used for the signal recovery. The linear programming described 
here in Eq. (6) is not designed for recovering noisy signal. The noise tolerance can be further 
improved by using a quadratic instead of the equality constraint [13]. In addition to the 
measurement noise, drift of the response function induced by temperature change is also 
common in spectral sensing. A known reference light beam or temperature sensors can be 
implemented to monitor such drift and compensate the measured spectra accordingly. 

 
Fig. 4. Result of signal recovery using compressive sensing without noise (a) and with noise 
(b). Red dashed lines are the original signals, and blue solid lines are the recovered signals. 
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