
Chapter 13

Photonic Transition in Nanophotonics

Zongfu Yu and Shanhui Fan

13.1 Introduction

Photonic transition [1] is induced by refractive index modulation. Many photonic

structures, including photonic crystals, or waveguides, can be described by a

photonic band structure. When these structures are subject to temporal refractive

index modulation, photon states can go through interband transitions, in a direct

analogy to electronic transitions in semiconductors. Such photonic transitions have

been recently demonstrated experimentally in silicon microring resonators [2]. In

this chapter, we review two applications using the photonic transitions.

As the first application, we show that based on the effects of photonic transitions,

a linear, broadband, and nonreciprocal isolator [3] can be accomplished by

spatial–temporal refractive index modulations that simultaneously impart fre-

quency and wavevector shifts during the photonic transition process. This work

demonstrates that on-chip isolation can be accomplished with dynamic photonic

structures, in standard material systems that are widely used for integrated

optoelectronic applications.

In the second application, we show that a high-Q optical resonance can be

created dynamically, by inducing a photonic transition between a localized state

and a one-dimensional continuum through refractive index modulation [4]. In this

mechanism, both the frequency and the external linewidth of a single resonance are

specified by the dynamics, allowing complete control of the resonance properties.

This chapter is organized as follows: in Sect. 13.2, we review photonic transition

induced by dynamic modulation; in Sects. 13.3 and 13.4, we describe the optical

isolator and tunable cavity based on photonic transition, respectively; Sect. 13.5 is

the conclusion part.
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13.2 Photonic Transition in a Waveguide

We start by describing the photonic transition process in a silicon waveguide.

The waveguide (assumed to be two-dimensional for simplicity) is represented by

a dielectric distribution esðxÞ that is time-independent and uniform along the

z-direction (Fig. 13.1b). Such a waveguide possesses a band structure as shown in

Fig. 13.1a, with symmetric and antisymmetric modes located in the first and second

band, respectively. An interband transition, between two modes with frequencies

and wavevectors ðo1; k1Þ; ðo2; k2Þ located in these two bands, can be induced by

modulating the waveguide with an additional dielectric perturbation:

e0ðx; z; tÞ ¼ dðxÞ cosðOt� qzÞ; (13.1)

where dðxÞ is the modulation amplitude distribution along the direction transverse

to the waveguide. O ¼ o2 � o1 is the modulation frequency. Figure 13.1c shows

Fig. 13.1 (a) Band structure

of a slab waveguide.

(b) Structure of a silicon

(es ¼ 12:25) waveguide.
Modulation is applied to the

dark region. (c) The

modulation profile at two

sequential time steps
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the profile of the modulation. Such a transition, with k1 6¼ k2, is referred to as an

indirect photonic transition, in analogy with indirect electronic transitions in

semiconductors.

We assume that the wavevector q approximately satisfies the phase-matching

condition, i.e., Dk ¼ k2 � k1 � q � 0. In the modulated waveguide, the electric

field becomes:

Eðx; z; tÞ ¼ a1ðzÞE1ðxÞeið�k1zþo1tÞ þ a2ðzÞE2ðxÞeið�k2zþo2tÞ; (13.2)

where E1;2ðxÞ are the modal profiles, satisfying the orthogonal condition: (for

simplicity, we have assumed the TE modes where the electric field has components

only along the y-direction)

vgi
2oi

ð1
�1

eðxÞE�
i Ej ¼ dij: (13.3)

In (13.3), the normalization is chosen such that anj j2 is the photon number flux

carried by the nth mode. By substituting (13.2) into the Maxwell’s equations, and

using slowly varying envelope approximation, we can derive the coupled mode

equation:

d
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where

lc ¼ 4p

e0
Ð1

�1
dðxÞE1ðxÞE2ðxÞdx

; (13.5)

is the coherence length. With an initial condition a1ð0Þ ¼ 1 and a2ð0Þ ¼ 0, the

solution to (13.4) is:
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p2 þ ðlcDkÞ2

q� �
: (13.6)

In the case of perfect phase-matching, i.e., Dk ¼ 0, a photon initially in mode 1

will make a complete transition to mode 2 after propagating over a distance of

coherence length lc (Fig. 13.2a). In contrast, in the case of strong phase-mismatch,

i.e., lcDk>>1, the transition amplitude is negligible (Fig. 13.2b).
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13.3 Photonic Transition for Integrated Optical Isolator

In this section, we use the photonic transition described in the previous section to

achieve on-chip optical isolation. In an optical network, isolators are an essential

component used to suppress back-reflection, and hence interference between dif-

ferent devices. Achieving on-chip optical signal isolation has been a fundamental

difficulty in integrated photonics. The need to overcome this difficulty, moreover,

is becoming increasingly urgent, especially with the emergence of silicon

nanophotonics, which promises to create on-chip optical systems at an unprece-

dented scale of integration.

To create complete optical signal isolation requires simultaneous breaking of

both the time-reversal and the spatial inversion symmetry. In bulk optics, this is

achieved using materials exhibiting magneto-optical effects. Despite many efforts

[5–8], however, on-chip integration of magneto-optical materials, especially in

silicon in a CMOS compatible fashion, remains a great difficulty. Alternatively,

optical isolation has also been observed using nonlinear optical processes [9, 10], or

in electroabsorption modulators [11]. In either case, however, optical isolation

occurs only at specific power ranges, or with associated modulation side bands.

In addition, there have been works aiming to achieve partial optical isolation in

Fig. 13.2 (a) Spatial

evolution of the photon

number flux of two modes

(dashed line mode 1 and solid
line mode 2), when a phase-

matching modulation is

applied to the waveguide.

(b) Maximum photon flux in

mode 2 as a function of phase

mismatch. The transition

becomes essentially

negligible at lcDk>>1
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reciprocal structures that have no inversion symmetry (for example, chiral

structures) [12]. In these systems, the apparent isolation occurs by restricting the

allowed photon states in the backward direction, and would not work for arbitrary

backward incoming states. None of the above nonmagnetic schemes can provide

complete optical isolation.

In this part, we review and expand upon our recent works [3, 13] on creating

complete and linear optical isolation using photonic transition. In these works, the

temporal profile of the modulation used to induce the transition is chosen to break

the time-reversal symmetry, while the spatial profile of the modulation is chosen to

break the spatial-inversion and the mirror symmetry. As seen by the finite-

difference time-domain simulations, when a silicon waveguide is under a modula-

tion that induces an interband photonic transition, light of frequency o1 in forward

direction is converted to a higher frequency mode o2 by the modulation

(Fig. 13.3a). At the same time, light of frequencies o1 or o2 in the backward

direction are not affected by the modulation (Fig. 13.3b, c). Combined with an

absorption filter centered ato2, this structure can absorb all lights incident from one

direction at o1, while passing those in the opposite direction, and thus creates a

complete isolator behavior. It was also shown that the finite-difference time-domain

simulations can also be well reproduced by coupled-mode theory [3].

We use the coupled mode theory as described in Sect. 13.2 to discuss

the performance and design considerations for our dynamic isolator schemes. The

waveguide system in Sect. 13.2 exhibits strong nonreciprocal behavior: the

modulation in (13.1) does not phase-match the mode at ðo1;�k1Þ with any other

mode of the system (Fig. 13.1a). Thus, while the mode at ðo1; k1Þ undergoes a

complete photonic transition, its time-reversed counterpart at ðo1;�k1Þ is not

affected at all. Such nonreciprocity arises from the breaking of both time-reversal

Fig. 13.3 Finite-difference time-domain simulation of an isolator based on photonic transitions.

The box indicates the regions where the refractive index is modulated. Blue/red shows the

amplitude of electric fields. Arrows indicate propagation directions

13 Photonic Transition in Nanophotonics 347



and spatial-inversion symmetries in the dynamics: The modulation in (13.1) is not
invariant with either t ! �t or z ! �z.

As a specific example, we consider a silicon ðe ¼ 12:25Þ waveguide of 0.27 mm
wide, chosen such that the first and second bands of the waveguide have the same

group velocity around wavelength 1.55 mm (or a frequency of 193 THz). The

modulation has a strength dmax=es ¼ 5� 10�4, a frequency O=2p ¼ 20GHz and

a spatial period 2p= qj j ¼ 0:886 mm. (All these parameters should be achievable in

experiments.) The modulation is applied to half of the waveguide width so that

the even and odd modes can couple efficiently. The modulation length L is chosen

as the coherence length lc0 ¼ 2:19mm (Fig. 13.1b) for operation frequency o0

at 1.55 mm wavelength. Figure 13.4a shows the transmission for forward and

backward directions. The bandwidth is 5 nm with contrast ratio above 30 dB.

For the loss induced by refractive index modulation schemes, e.g., carrier

injection modulation, the contrast ratio remains approximately the same as the

lossless case, since the modulation loss applies to transmission in both directions.

Thus the isolation effect is not affected. As an example, the modulation strength

used here d=es ¼ 5� 10�4 results in a propagating loss of 1.5 cm�1 in silicon

[14]. This causes an insertion loss about �3.5 dB while the bandwidth remains

approximately unchanged (Fig. 13.4b).

Fig. 13.4 Forward and

backward transmission

spectra without (a) and

with (b) modulation loss
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In general, nonreciprocal effects can also be observed in intraband transitions

involving two photonic states in the same photonic band. However, since typically

O<<o1, and the dispersion relation of a single band can typically be approximated

as linear in the vicinity ofo1, cascaded process [2], which generates frequencies at

o1 þ nO with n > 1, is unavoidable, and it complicates the device performance.

In contrast, the interband transition here eliminates the cascaded processes.

We would like to emphasize that the modulation frequency can be far smaller

than the bandwidth of the signal. This is in fact one of the key advantages of using

interband transition. The transition occurs from a fundamental even mode to a

second-order odd mode. The generated odd mode can be removed with the use of

mode filters that operate based on modal profiles. Examples of such mode filters can

be found in [15, 16]. It is important to point out that such mode filters are purely

passive and reciprocal, and can be readily implemented on chip in a very compact

fashion. Moreover, later in this section, we discuss an implementation of an isolator

without the use of modal filters.

13.3.1 Detailed Analysis of the Isolator Performance

Below in this section, based on the coupled mode theory, we analyze in details

various aspects regarding the performance of the proposed isolator including in

particular its operational bandwidth and device size.

13.3.1.1 Bandwidth

The dynamic isolator structure creates contrast between forward and backward

propagations by achieving complete frequency conversion only in the forward

direction. As discussed above, the modulation is chosen such that, it induces a

phase-matched transition from an even mode at the frequencyo0 to an odd mode at

the frequency ofo0 þ O. The length of the waveguide is chosen to be the coherence
length lcðo0Þ for this transition, such that complete conversion occurs at this

frequency o0 for the incident light. In order to achieve a broad band operation,

one would need to achieve near-complete conversion for all incident light having

frequencies o in the vicinity of o0 as well. From (13.6), broad band operation

therefore requires that

DkðoÞ ¼ 0

lcðoÞ ¼ L ¼ lcðo0Þ: (13.7)

The first condition in (13.7) implies that the phase-matching condition needs to

be achieved over a broad range of frequencies, and the second condition implies

that the coherence length should not vary as a function of frequency. Deviations

from these conditions result in a finite operational bandwidth.
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We consider the phase-matching condition first. In the vicinity of the design

frequency o0, the wavevector mismatch can be approximated by Dk ¼ k1ðoÞ�
k2ðo þ OÞ � q � ðð1=vg1ðoÞÞ � ð1=vg2ðo þ OÞÞÞDo þ 1=2ððd2k1ðoÞ=do2Þ�
ðd2k2o þ OÞ=do2ÞDo2jjo¼o0

.

Thus, to minimize the phase mismatch, it is necessary, first of all, that the two

bands have the same group velocities, i.e., the two bands are parallel to each other.

Moreover, it is desirable that the group velocity dispersion of the two bands

matches with one another. As a quantitative estimate, assuming that lcðoÞ � L
for all frequencies, Fig. 13.5a shows the forward transmission as a function of LDk.
For a transmission below�30 dB, this requires a phase mismatch ofLDk<0:1. As a
concrete example for comparison purposes, Fig. 13.6a shows the phase mismatch

LDk as a function of wavelength for the structure simulated in Fig. 13.4. Notice that

LDk<0:1 over a bandwidth of 5 nm due to the mismatch of group velocity

dispersion in the two guided mode bands. Thus the operating bandwidth of this

device for 30 dB contrast is on the order of 5 nm.

For the second condition in (13.7), we note that in most waveguide structures,

since the coherence length is determined by the modal profile, it generally varies

slowly as a function of frequency. For example, for a waveguide with parameters

chosen in Sect. 13.2, the coherence length varies <2% over 20 nm bandwidth

Fig. 13.5 Forward

transmission as a function of

(a) phase mismatch and (b)

coherence length variation
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around 1.55 mm wavelength (Fig. 13.6b). As a simple estimate of how coherence

length variation impacts device performance, assuming that DkðoÞ ¼ 0 over a

broad frequency range, we calculate the forward transmission as a function of

coherence length given the modulation length L ¼ lcðo ¼ o0Þ (Fig. 13.5b). For

2% variation of the coherence length, the forward transmission remains below

�30 dB. Comparing Fig. 13.6a, b, therefore, we conclude that for the structure

simulated in Fig. 13.4, the 5-nm bandwidth is primarily limited by group velocity

dispersion of the two waveguide bands. Since the structure used in Fig. 13.4 is a

rather simple, we believe that substantial further enhancement of operating band-

width is achievable by optimization of waveguide geometry.

13.3.1.2 Device Size

The size of the isolator is determined by the coherence length lc. Starting from

(13.5), and taking into account the normalization of E field (13.3), the coherence

length can be written as

lc ¼ 4p

e0
Ð1

�1
dðxÞE1ðxÞE2ðxÞdx

¼ 2p
g

ffiffiffiffiffiffiffiffiffiffiffiffi
vg1vg2
o1o2

r
� l0 :

1

g
: vg
c
; (13.8)

Fig. 13.6 Phase mismatch

(a) and coherence length

(b) as a function of

wavelength for the device

simulated in Fig. 13.4
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where g ¼ ðÐ1�1 dðxÞE1ðxÞE2ðxÞdxÞ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ1
�1 eðxÞjE1j2dx

Ð1
�1 eðxÞjE2j2dx

q
Þ characterizes

the effect of modulation. In deriving (13.8), we assume that o1 � o2 � 2pc=l0,
where l0 is the wavelength in vacuum, since the modulation frequency is typically

far smaller than the optical frequency. Moreover, the two bands are assumed to

be parallel to each other, i.e., vg1 � vg2 � vg. Equation (13.8) indicates that the

device size is proportional to the group velocity and is inversely proportional to the

modulation strength. For a rough estimate, with a modulation strength

g � ðd=eÞ � 10�4, operating at a wavelength of l � 1:5 mm and vg � c=3, the

coherence length lc � 5mm. To reduce the size, one can use stronger modulation

strength and/or slow light waveguides.

13.3.1.3 Near-Phase-Matched Transition in the Backward Direction

In general, due to energy conservation constraint, a mode with a frequency of o1

can only make a transition to modes at o1 � O. In our design, the modulation is

chosen to create a phase-matched transition in the forward direction. However, for

most electro-optic or acoustic-optic modulation schemes, the modulation frequency

Ob100GHz is much smaller than the optical frequency. Consequently, as can

be seen from Fig. 13.7a, in the backward direction the transition to the mode in

the second band with a frequency o3 ¼ o1 � O becomes nearly phase-matched.

The wavevector mismatch of this transition is:

Dkb ¼ �k2ðo1 � OÞ þ k1ðo1Þ þ q � 2O
vg

: (13.9)

Such a transition results in loss in the backward direction and thus a reduction of

contrast between the forward and backward directions.

To calculate such transmission loss in the backward direction, we replace Dk in
(13.6) with Dkb. In general, in order to suppress such backward transmission loss,

one needs to have:

Dkb 	 L 
 1: (13.10)

Combining with (13.8), the condition of (13.10) is then transformed to:

2l0
c

:O
g

 1: (13.11)

Remarkably, we note from (13.11) that for electro-optic or acoustic-optic mod-

ulation schemes, the effects of weak refractive index modulationg and low modu-

lation frequency O cancel each other out. The use of weak refractive index

modulation results in a long coherence length, which helps in suppressing the

transition processes that are not phase matched. And it is precisely such a cancel-

ation that enables the construction of dynamic isolators with practical modulation

mechanisms.
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For the example shown in Fig. 13.4, the near-phase-matched transition in the

backward direction has aDkb ¼ 2p=2:06mm and thusDkbL ¼ 6:7, which results in
a loss of �0.22 dB for the backward transmission (Fig. 13.7b).

13.3.2 Design Flexibility

In the previous sections, we have shown that by using interband transition, one can

create nonreciprocal mode conversion in a waveguide. Such a waveguide works as

an isolator when combined with a modal filter. The performance of such device can

be analyzed and optimized using coupled mode theory. In this section, we present

two examples to show that such nonreciprocal photon transition can be exploited in

a wide range of structures to form nonreciprocal optical devices that satisfy diverse

performance requirements. In the first example, we design a four-port isolator/

circulator using nonreciprocal phase shift in the interband transitions. In the second

example, we use a nonreciprocal ring resonator to demonstrate a compact design for

optical isolation.

Fig. 13.7 (a) The transition

diagram for low frequency

modulation. (b) Spatial

evolution of photon flux in the

backward direction for an

even mode at 1.55 mm
wavelength (dashed line) and
an odd mode (solid line) that
is 20 GHz lower in frequency.

The structure has the same

parameters described in

Sect. 13.2
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13.3.2.1 Four-Port Circulator

Figure 13.8a shows the design of a four-port circulator [13]. The structure consists

of a Mach–Zehdner interferometer, in which one waveguide arm is subject to the

dynamic modulation described above. In contrast to the design in Sect. 13.3,

however, here the length of the modulation region is chosen to be twice the

coherence length L ¼ 2lc. Thus, light passing through the modulated waveguide

in the forward direction will return to the incident frequency (Fig. 13.2a). However,

such light experiences a nonreciprocal phase shift due to the photonic transition

effect. The use of a Mach–Zehnder interferometer configuration then allows one to

construct a circulator. Here no filter is required, which significantly reduces the

device complexity.

For concreteness, we assume that the interferometer has two arms with equal

length, and uses two 50/50 waveguide couplers. For such an interferometer, the

transmission is described by

bu
bl

� �
OUT

¼ 1

2

1 i
i 1

� �
T expði’pÞ 0

0 expði’pÞ
� �

1 i
i 1

� �
bu
bl

� �
IN

: (13.12)

Here, the sub-script “IN” and “OUT” label the input or output. bu=l are the input or
output amplitudes in the upper/lower arm. ’p is the phase acquired due to propaga-

tion in the absence of modulation.

Fig. 13.8 Schematic (a) and

transmission spectrum (b) of

a four port circulator. The

dynamic index modulation is

applied to the waveguide in

the dashed red box
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In (13.12), the transmission coefficient through the upper arm has an addition

contribution from the photon transition:

T ¼ e�izDk=2 cos
z

2lc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðlcDkÞ2

q� �
þ i

lcDkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðlcDkÞ2

q sin
z

2lc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðlcDkÞ2

q� �2
64

3
75;

(13.13)

which influences both the transmission amplitude and the phase as the wave passes

through the upper arm. In our design, we assume a phase-matching modulation with

Dk ¼ 0 for the forward direction, and use a modulated region with L ¼ 2lc.
Equation (13.13) shows T ¼ �1. In contrast, for the light in the backward direction

in the upper arm, in general the phase matching condition is not satisfied. Hence,

T � 1. Thus, in this design, the modulation does not create any frequency conver-

sion. Instead its sole effect is to induce a nonreciprocal phase shift in the upper arm.

The interferometer in Fig. 13.8 exploits such nonreciprocal phase to create a

circulator. We have used the coupled mode theory developed in Sect. 13.3, to

simulate this structure, assuming the same waveguide parameters as in Fig. 13.4.

The results, shown in Fig. 13.8, indicate that lights injected into port 1 completely

output through port 3, while in the time reversed case, lights injected into port

3 ends up in port 2. Therefore, this device has exactly the same response function of

a four-port circulator. Unlike conventional design, however, no magnetic

components are used inside the structure. Alternatively, the device can also func-

tion as a two-port isolator. Figure 13.8b shows the transmission spectra in both

directions between ports 1 and 4: lights incident from port 4 transmit to port 1 while

the reverse transmission is completely suppressed. The contrast ratio for the two

directions is above 30 dB for a bandwidth of 5 nm (Fig. 13.8b).

13.3.2.2 Nonreciprocal Ring Resonator

As discussed before, the device size is determined by the coherence length,

which typically is above millimeters unless slow light waveguides are used.

Substantial reduction of the device footprint can be accomplished using resonator

structure at the expense of a smaller operating bandwidth [3]. As an example, we

consider a ring resonator (Fig. 13.9a) that supports two anticlockwise rotating

resonances, at frequencies o1 and o2, respectively. Each resonance is further

characterized by its wavevector k1 and k2 in the waveguide that forms the ring.

These two resonances are coupled by applying a dielectric constant modulation

along the ring with a profile dðxÞ cos½ðo1 � o2Þt� ðk1 � k2Þz�, where z measures

the propagation distance on the circumference of the ring in counterclockwise

direction.
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To describe the action of this structure, we note that upon completing one round

trip, the circulating amplitudes a1;2 and b1;2 of these two modes (Fig. 13.9b) are

related by:

a1
a2

� �
¼ T11 T12

T21 T22

� �
b1
b2

� �
; (13.14)

where the matrix elements are related to the transition amplitudes for a single round

trip, and can be calculated using (13.4). Each of these modes is also coupled to an

external waveguide as described by:

b1
B1

b2
B2

0
BB@

1
CCA ¼

r1 jt1 0 0

jt1 r1 0 0

0 0 r2 jt2
0 0 jt2 r2

0
BB@

1
CCA

a1
A1

a2
A2

0
BB@

1
CCA: (13.15)

The external waveguide is also assumed to support two modes with opposite

symmetry at the frequencies o1;o2 respectively. Here, the subscripts label the

two frequencies. A1;2 and a1;2 (B1;2 and b1;2) are the photon flux amplitudes in

the external and ring waveguides before (after) the coupler. The coefficients r, t are
taken to be real [17] and r21;2 þ t21;2 ¼ 1.

With incident light in mode 1 (i.e., A1 ¼ 1, A2 ¼ 0) of the external waveguide,

combining (13.14) and (13.15), we have

B1 ¼ r1 � T11 � r1r2T22 þ r2Det½T�
1� r1T11 � r2T22 þ r1r2Det½T� ; (13.16)

Fig. 13.9 (a) Schematic of

ring resonator designed for

nonreciprocal frequency

conversion. The dark regions
are modulated. (b) Schematic

of the modes in the ring-

waveguide coupling region
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where Det stands for determinant. Thus, the condition for complete frequency

conversion (i.e., B1 ¼ 0) is

r1 � T11 � r1r2T22 þ r2Det½T� ¼ 0: (13.17)

In the case that ring is lossless, Det[T] ¼ 1 and T11 ¼ T22 ¼ cosððp=2ÞðL=lcÞÞ,
where lc is the coherence length and L is circumference of the ring. Complete

conversion between the two modes can be achieved when the length of the ring is

chosen to be

cos
p
2

L

lc

� �
¼ r1 þ r2

1þ r1r2
: (13.18)

With r1;2 ! 1, L=lc ! 0, the device therefore can provide complete frequency

conversion even when its length is far smaller than the coherence length.

As an example, now we use the same waveguide discussed in Fig. 13.4 to form a

ring with a radius r ¼ 12:3 mm. Such a ring supports two resonant modes: a first

band resonant mode at 1.55 mm and a second band mode that is 50 GHz higher in

frequency. (This is always achievable by fine tuning the radius and width of the

waveguide.) A phase matching modulation is applied to the ring with a coherence

length lc ¼ 2:37mm. At the design wavelength 1.55 mm, the forward transmission

is completed suppressed (Fig. 13.10). Here, the complete isolation is achieved with

a device size much smaller than the coherence length.

In this section, we have provided some of detailed theoretical considerations for

the dynamic isolator structures that we have recently proposed. In contrast to

previously considered isolators based on material nonlinearity [9, 10] where isola-

tion is only achievable for a range of incident power, the photonic transition effect

studied here is linear with respect to the incident light: the effect does not depend

upon the amplitude and phase of the incident light. Having a linear process is

crucial because the device operation needs to be independent of the format, the

Fig. 13.10 Transmission

spectra of a ring-resonator

isolator. o0 corresponds to

1.55 mm wavelength. The

waveguide-ring transmit

coefficient is assumed to be

r1;2 ¼ 0:95
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timing and the intensity of the pulses used in the system. In conclusion, the structure

proposed here shows that on-chip isolation can be accomplished with dynamic

modulation, in standard material systems that are widely used for integrated

optoelectronic applications.

13.4 Photonic Transition for Tunable Resonance

In this section, we review the tunable resonance based on photonic transition.

Resonance appears when a localized state couples to a continuum. In photonics,

of particular interest is when the localized state is supported by an optical

microcavity, and the continuum is one-dimensional such as in a waveguide. Such

waveguide-cavity configurations find applications in filters, sensors, switches,

slow-light structures, and quantum information processing devices.

In all applications of resonance, it is essential to accurately control its spectral

properties. For the waveguide-cavity resonances, some of the important spectral

properties are the resonance frequency, and the external linewidth due to waveguide-
cavity coupling. The inverse of such linewidth defines the corresponding quality

factor (Q) of the cavity.
In this part, we show that a single high-Q resonance can be created by

dynamically inducing a photonic transition between a localized state and a one-

dimensional continuum. Since the coupling between the continuum and the

localized state occurs solely through dynamic modulations, both the frequency

and the external linewidth of a single resonance are specified by the dynamics,

allowing complete control of its spectral properties.

We start by first briefly reviewing the Anderson–Fano model [18, 19], which

describes the standard waveguide-cavity systems:

H ¼ occ
þcþ

ð
oka

þ
k akdk þ V

ð
ðcþak þ aþk cÞdk: (13.19)

Here, oc is the frequency of a localized state that is embedded inside a one-

dimensional continuum of states (Fig. 13.11a) defined by ok. c
þðcÞ and ak

þðakÞ
are the bosonic creation (annihilation) operators for localized and continuum states,

respectively. V describes the interaction between them. Such a model supports a

resonance ato0 ¼ oc, with an external linewidth g ¼ 2pðV2=vgÞ (defined as the full
width at half maximum of the resonance peak). Here, vg � dok

dk

���
o0

.

In contrast to the standard Fano-Anderson model, our mechanism is described by

the Hamiltonian: (Fig. 13.11b)

H ¼ occ
þcþ

ð
oka

þ
k akdk þ ðV þ VD cosðOtÞ

ð
ðcþak þ aþk cÞdk: (13.20)
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Here, unlike in (13.19), we assume that ok>oc for any k. Consequently, the
static coupling term V

Ð ðcþak þ aþk cÞdk no longer contributes to the decay of the

resonance. Instead, it only results in a renormalization of oc. The localized state

decays solely through the dynamic termVD cosðOtÞ Ð ðcþak þ aþk cÞdk, which arises
from modulating the system. Such modulation induces a photonic transition

between the localized state and the continuum.

For the Hamiltonian of (13.20), one can derive an input–output formalism [20] in

the Heisenberg picture, relatingCðtÞ ¼ cðtÞe�iOt to the input field operator aINðtÞ as:
d

dt
C ¼ �iðoc þ OÞC� g

2
Cþ i

ffiffiffi
g

p
aIN; (13.21)

where g ¼ 2pðððVD=2Þ2Þ=vgÞwith vg ¼ dok

dk

���
o¼ocþO

. For an incident waveaIN in the

waveguide, the modulated system therefore creates a single resonance at the

frequency o0 ¼ oc þ O. Importantly, unlike the static system in (13.19), here

both the frequency o0 and the external linewidth g of the resonance are controlled
by the dynamic modulation.

We now realize the Hamiltonian in (13.20) in a photonic crystal heterostructure

[21] (Fig. 13.12a). The structure consists of a well and two barrier regions, defined

in a line-defect waveguide in a semiconductor (e ¼ 12:25) two-dimensional

photonic crystal. In the barrier regions, the crystal has a triangular lattice of air

holes with a radius r ¼ 0.3a, where a is the lattice constant. The waveguide

supports two TE ðHz;Ex;EyÞ modes with even and odd modal symmetry

(Fig. 13.12c, light gray lines). In the well region, the hole spacing a0 along the

waveguide is increased to 1.1a, which shifts the frequencies of the modes down-

ward (Fig. 13.12c, dark lines) compared to those of the barriers. As a result, the odd

modes in the well and the barriers do not overlap in frequencies. Thus, the well can

support localized states, which are essentially standing waves formed by two

Fig. 13.11 Two different coupling mechanisms between a localized state and a one-dimensional

continuum. (a) Static case: The frequency oc of the localized state lies in the band of the

continuum. The static coupling between them results in a resonance at o0 ¼ oc. (b) Dynamic

case: The localized state has its frequency oc that falls outside the continuum. A modulation at a

frequency O creates a photonic transition that couples them, resulting in a resonance at

o0 ¼ oc þ O
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counter-propagating odd modes in the well. Figure 13.12b shows one such localized

state at the frequency oc ¼ 0:2252ð2pc=aÞ, with its corresponding waveguide

mode at the wavevector qc ¼ �0:37ð2p=aÞ indicated by a red dot in Fig. 13.12c.

Without modulation such a localized state cannot leak into the barrier and hence

cannot be excited by wave coming from the barrier.

To induce a photonic transition, we modulate the dielectric constant of the well

in the form of eD ¼ DeðyÞ cosðOt� qxÞ. Here, the modulation frequency O is

chosen such that an even mode in the well at the frequency oc þ O can leak into

the barriers. The modulation wavevector q is selected to ensure a phase-matched

transition between this even mode and the odd mode at ðoc; qcÞ that forms the

localized state. Since these two modes have different symmetry, the modulation has

an odd transverse profile: DeðyÞ ¼ signðyÞDe, with y ¼ 0 located at the waveguide

center.

In the presence of the modulation, we consider an even mode incident from the

left barrier, with a frequencyo in the vicinity ofoc þ O. As it turns out, for the even
modes, the transmission coefficients into and out of the well are near unity. Thus,

inside the well, the amplitudes of the even mode (Fig. 13.13, blue arrow) at the two

edges,Ax¼0 andAx¼L, are the input and output amplitudes of the system. As the even

mode propagates forward from x ¼ 0 to x ¼ L, the modulation induces a transition

to a copropagating odd mode at o� O (Fig. 13.13, red arrow). This transition

process is described by [3]:

Ax¼L

Bx¼L

� �
¼ expðiLqoÞ 0

0 expðiLqo�OÞ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

i�

i�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
� �

Ax¼0

Bx¼0

� �
;

(13.22)

Fig. 13.12 (a) A photonic crystal heterostructure. The width of the waveguide measured from the

centers of the holes on the two sides is 1.33a. The highlighted rectangle represents the modulated

region, which has dimensions of 2a� 9:7a. (b) Electric field ðEyÞ profile of a localized state in the
well. Red and blue represent positive and negative maximum amplitudes. (c) Dispersion relation of

the photonic crystal waveguide modes. The dark and light gray lines are for modes in the well and

barriers, respectively. Solid (dashed) lines represent modes with even (odd) modal symmetry.

Shadowed regions are the extended modes of the crystal region of the well
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whereBx¼0 andBx¼L are the amplitudes of the copropagating odd mode ato� O at

the two edges, qo and qo�O are the wavevectors of the two modes. For weak

modulation, the transition rate � ¼ ðDe=eÞLk<<1, where k is the overlap factor

between the two modes and the modulation profile.

Once the fields reach x ¼ L, the odd mode is completely reflected, and

propagates back to x ¼ 0. We note that no significant photon transition occurs in

the backward propagation, since the modulation profile does not phase-match

between ðo;�qoÞ and ðo� O;� qo�OÞ. Consequently,
Bx¼0 ¼ expðiLqo�O þ i2fÞBx¼L; (13.23)

wheref is the reflection phase at the well edge. Also, since there is a localized state

at oc, the round trip phase at oc is 2ðLqoc
þ fÞ ¼ 2pn where n is an integer.

Therefore, the round trip phase for the odd mode at o� O � oc can be

approximated as

2ðLqo�O þ fÞ � 2pnþ ðo� O� ocÞ 2L
vgc

; (13.24)

where vgc ¼ do
dk

���
o¼oc

. Combined (13.22)–(13.24), the transmission spectrum is:

T ¼ Ax¼L

eiLqoAx¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
� e

iðo�o0Þ 2Lvgc

1� e
iðo�o0Þ 2Lvgc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p � o� o0 � i g
2

o� o0 þ i g
2

; (13.25)

where g ¼ ðDe=eÞ2ðk2Lvgc=2Þ.
The detailed microscopic theory thus predicts all-pass filter response for this

dynamic system consisting of a waveguide coupled to a standing-wave localized

state. In contrast, in the static system, coupling of a waveguide to a standing-wave

Fig. 13.13 The microscopic theory for photonic transition in the photonic crystal heterostructure.

Incident light from the barrier at a frequency o, as represented by the blue arrows, couples to a

mode of the well at the frequency o� O, as represented by the red arrows. The dashed lines
indicate the edges of the well
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localized state always produces either band-pass or band-reflection filters. Moreover,

the resonant frequency

o0 ¼ oc þ O (13.26)

and the quality factor

Qe � o0

g
¼ e

De

� �2 2o0

k2Lvgc
(13.27)

are completely controlled by the modulation, in agreement with the phenomeno-

logical model (13.21).

We numerically test the theory using finite-difference time-domain (FDTD)

simulations. We simulate a well with a length of 9.9a. Such a well supports the

localized state shown in Fig. 13.12b. The length of the modulated region L ¼ 9.7a
(Fig. 13.12a). We excite the even modes in the left barrier, with a Gaussian pulse

centered at 0:235ð2pc=aÞ, and a width of 0:001ð2pc=aÞ. Without the modulation,

the transmission coefficient (Fig. 13.14a) is near unity. With the modulation (with a

strength De=e ¼ 1:63� 10�2, a frequency O ¼ 9:8� 10�3ð2pc=aÞ, and a

wavevector q ¼ 0:196ð2p=aÞ), the transmission spectrum shows little change

(Fig. 13.14b). However, the group delay now exhibits a resonant peak with a quality

factor Qe ¼ 1:09� 104 (Fig. 13.14c, blue line). The structure indeed becomes a

high-Q all-pass filter.

The properties of this resonance are controlled by the modulation. The resonant

frequency changes linearly with respect to the modulation frequency, as predicted

(Fig. 13.14e). (When varying the modulation frequency, we also change the modu-

lation wavevector at the same time to satisfy the phase-matching condition.) The

resonance frequency is largely independent of the modulation strength

(Fig. 13.14e). The width of the resonance, and the peak delay, can be adjusted by

changing the modulation strength (Fig. 13.14d). As a comparison between theory

(13.27) and simulations, Fig. 13.14f plots the quality factor as a function of the

modulation strength at the fixed modulation frequency O ¼ 9:8� 10�3ð2pc=aÞ.
The simulation agrees excellently with the theory. The theory curve is generated

with only one fitting parameter: the modal overlap factor k ¼ 0:99a�1, which

agrees well to a direct and separate calculation of the well waveguide by itself

that yields k ¼ 1:16a�1. The difference can be attributed to the finite-size effect of

the well–barrier interfaces.

We now comment on some of the challenges in the practical implementations.

For the simulated structure above, according to (13.27), a modulation strength of

De=e ¼ 5� 10�3, which is achievable using carrier injection in semiconductors

[14], results in an external quality factor of Qe ¼ 1:1� 105. In comparison, the

radiation quality factors of photonic crystal heterostructure cavities exceeded 106 in

experiments [22].

362 Z. Yu and S. Fan



Regarding the required modulation frequencies, in the simulation, O ¼ 9:8�
10�3ð2pc=aÞ represents a modulation frequency of 8.1 THz, when the resonance

frequencyo0 ¼ 0:235ð2pc=aÞ corresponds to the wavelength of 1.55 mm. This is in

principle achievable, since many index modulation scheme has intrinsic response

time below 0.1 ps [23].

As final remarks, in our scheme, the tuning range for the resonant frequency is

ultimately limited by the intrinsic response time of the material. Thus, the resonant

frequency of the structure have a much wider tuning range, and can be reconfigured

with a much higher speed, compared with conventional mechanisms. Moreover, the

modulation frequency can typically be specified to a much higher accuracy [24],

resulting in far more accurate control of the resonant frequency. Lastly, the

localized state here is “dark” since it does not couple to the waveguide in the

absence of modulation. Our scheme, which provides a dynamic access to such a

dark state, is directly applicable for stopping and storage of light pulses, since the

existence of a single dark state is sufficient [25].

Fig. 13.14 Theory and simulation for the photonic transition process for the structure in Fig. 13.12.

(a) Transmission spectrum for the unmodulated structure. (b) Transmission spectrum in the

presence of modulation. The modulation has a frequency O ¼ 9:8� 10�3ð2pc=aÞ and a strength

ofDe=e ¼ 1:63� 10�2. (c) Group delay spectra, withDe=e fixed at 1:63� 10�2. The blue, red and
green lines correspond to O ¼ 9:8� 10�3; 11:3� 10�3 and 12:8� 10�3ð2pc=aÞ, respectively.
(d) Group delay spectra, with O fixed at 9:8� 10�3ð2pc=aÞ. The blue, red, and green lines
correspond to De=e ¼ 1:63� 10�2; 3:27� 10�2 and 6:53� 10�2. (e) Resonant frequency as a

function of the modulation frequency. The blue and red circles corresponds to modulation strength

of De=e ¼ 1:63� 10�2 and 3:27� 10�2 respectively. Circles are simulation results as determined

the peak location of group delay spectra, and the line is from analytical calcualtion. (f) Quality

factor as a function of modulation strength. Circles are simulation results as determined from the

peak width in (d), the line is from analytic calculation
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13.5 Conclusion

In this chapter, we review the application of photonic transition for optical isolation

and tunable resonance. These applications rely on photonic structures that can be

dynamically modulated. Experimental techniques to achieve these dynamic

structures have undergone fast development. One of the prominent techniques is

to use carrier injection to modulate refractive index. Moreover, novel technique

based on optical force has also emerged, such as the optomechanical modulation

[26]. These developments open exciting opportunities for dynamic photonic

structures.

References

1. J.N. Winn, S.H. Fan, J.D. Joannopoulos, E.P. Ippen, Phys. Rev. B 59(3), 1551–1554 (1999)

2. P. Dong, S.F. Preble, J.T. Robinson, S. Manipatruni, M. Lipson, Phys. Rev. Lett. 100(3),

033904 (2008)

3. Z. Yu, S. Fan, Nat. Photon. 3(2), 91–94 (2009)

4. Z. Yu, S. Fan, Appl. Phys. Lett. 96(1), 011108 (2010)

5. R.L. Espinola, T. Izuhara, M.C. Tsai, R.M. Osgood, Opt. Lett. 29(9), 941–943 (2004)

6. M. Levy, J. Opt. Soc. Am. B: Opt. Phys. 22(1), 254–260 (2005)

7. T.R. Zaman, X. Guo, R.J. Ram, Appl. Phys. Lett. 90(2), 023514 (2007)

8. H. Dotsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel,

A.F. Popkov, J. Opt. Soc. Am. B: Opt. Phys. 22(1), 240–253 (2005)

9. M. Soljacic, C. Luo, J.D. Joannopoulos, S.H. Fan, Opt. Lett. 28(8), 637–639 (2003)

10. K. Gallo, G. Assanto, K.R. Parameswaran, M.M. Fejer, Appl. Phys. Lett. 79(3), 314–316

(2001)

11. S.K. Ibrahim, S. Bhandare, D. Sandel, H. Zhang, R. Noe, Electron. Lett. 40(20), 1293–1294

(2004)

12. G. Shvets, Appl. Phys. Lett. 89, 141127 (2006)

13. Z. Yu, S. Fan, Appl. Phys. Lett. 94(17), 171116 (2009)

14. B.R. Bennett, R.A. Soref, J.A. Delalamo, IEEE J. Quant. Electron. 26(1), 113–122 (1990)

15. Y. Jiao, S.H. Fan, D.A.B. Miller, Opt. Lett. 30(2), 141–143 (2005)

16. B.T. Lee, S.Y. Shin, Opt. Lett. 28(18), 1660–1662 (2003)

17. H.A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984)

18. U. Fano, Phys. Rev. 124(6), 1866–1878 (1961)

19. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

20. D.F. Walls, G.J. Milburn, Quantum Optics (Springer, Berlin, 1994)
21. B.S. Song, S. Noda, T. Asano, Y. Akahane, Nat. Mater. 4(3), 207–210 (2005)

22. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, T. Watanabe, Appl. Phys. Lett.

88(4), 041112 (2006)

23. S. Schmittrink, D.S. Chemla, W.H. Knox, D.A.B. Miller, Opt. Lett. 15(1), 60–62 (1990)

24. T.W. Hansch, Rev. Mod. Phys. 78(4), 1297 (2006)

25. C.R. Otey, M.L. Povinelli, S.H. Fan, J. Lightwave Technol. 26(21–24), 3784–3793 (2008)

26. M. Eichenfield, J. Chan, R.M. Camacho, K.J. Vahala, O. Painter, Nature 462, 78–82 (2009)

364 Z. Yu and S. Fan


	Chapter 13: Photonic Transition in Nanophotonics
	13.1 Introduction
	13.2 Photonic Transition in a Waveguide
	13.3 Photonic Transition for Integrated Optical Isolator
	13.3.1 Detailed Analysis of the Isolator Performance
	13.3.1.1 Bandwidth
	13.3.1.2 Device Size
	13.3.1.3 Near-Phase-Matched Transition in the Backward Direction

	13.3.2 Design Flexibility
	13.3.2.1 Four-Port Circulator
	13.3.2.2 Nonreciprocal Ring Resonator


	13.4 Photonic Transition for Tunable Resonance
	13.5 Conclusion
	References


