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Superradiant absorption in multiple optical nanoresonators
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Optical resonators offer an excellent analog of quantum two-level systems. Studying optical analogs of
the electromagnetically induced transparency and the Fano interference has greatly stimulated the field of
nanophotonics. In this context, the theoretical analysis is developed for the optical analog of superradiance in
multiple nanoresonators. Unique superradiant effects are found for light absorption in nanoresonators, such as
superradiance-induced transparency.
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Discovered by Dicke in 1954 [1], superradiance describes
a collective coherent effect in a cluster of identical quantum
emitters: A single quantum emitter prepared in the upper level
creates spontaneous emission with an intensity I ; when N

emitters are placed together within a wavelength dimension,
the total emission intensity grows to N2I , instead of the
incoherent addition NI . The emitters have no direct near-field
coupling, and yet their phases are synchronized. Such in-phase
oscillation is mediated through the free-space field that they
radiate to.

Compared to the analogs [2–11] of electromagnetically in-
duced transparency (EIT) [12] and Fano [13] interference, the
optical analog of superradiance is more challenging to achieve.
It requires N nanoresonators with deep subwavelength sizes
placed within a wavelength dimension [14]. While the su-
perradiance can be created with properly managed near-field
interactions, which will be discussed later, a faithful analog
of quantum emitters requires the near-field interaction to be
minimal. The requirements of subwavelength sizes [15] and
minimal near-field interaction rule out many nanoresonator
candidates. In addition to the challenges in the implementation,
theoretical treatments developed for quantum emitters also
need to be adapted to include the light absorption in nanores-
onators, which is of practical importance for optoelectronic
devices.

In this paper, we developed a classical optical theory for
the analog of superradiance based on a multiresonator mul-
tichannel temporal coupled mode theory. The theory reveals
unique superradiant absorption effects, such as superradiance-
induced transparency where total absorption of N resonators
is suppressed by a factor of 1/N . This suppression effect is
in great contrast to the enhancement effect in superradiant
emission. It is also in great contrast to an intuitive dipole-
approximation picture that is used to explain the N2 emission
enhancement [16]. The dipole approximation would predict
that the absorption increases linearly with N . To validate
theoretical predictions, we simulate the analog of superradi-
ance using graphene ribbon resonators [17–20], which offer
deep subwavelength sizes as well as easy control of near-field
interactions.

We note that the superradiant effect has been frequently
noted in two-resonator systems in the optical analogs of EIT
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and Fano interferences [2,21–23]. In addition, the N resonator
has also been studied before, but it was treated in an incoherent
manner without considering either the near-field or the far-field
interactions among resonators [24,25]. The work here provides
a complete theoretical treatment of the N -resonator system and
demonstrates unique superradiant absorption effects.

We start by considering a cluster of N optical resonators.
The damping mechanism in the resonator includes the light
absorption by materials and the coupling to the free-space
radiation. The dynamics can be described by a temporal
coupled mode theory [26,27]. From energy conservation
and time-reversal symmetry, one can obtain the equation
governing the interaction between multiple resonators and
multiple free-space radiation channels [21,28]:

d

dt
a = (i� − �)a + DT Sin, (1)

where a = (a1,a2, . . . ,aN ) are the amplitudes of resonators
normalized such that |ai |2 is the energy stored in the ith res-
onator. Sin = (S1,S2, . . . ,Sm) are the amplitudes of the power
flux carried by each orthogonal radiation channel. D is the
coupling rate between N resonators and m free-space channels.
T is the transpose operator. The Hamiltonian � is given by

� =

⎛
⎜⎝

ω1 + iγ1

2 · · · �1N

· · · · · · · · ·
�N1 · · · ωn + iγN

2

⎞
⎟⎠ , (2)

where ωi and γi are the resonant frequencies and the
absorption rates, respectively. The off-diagonal elements �ij

are the near-field interaction among resonators due to the
overlap of near fields. In addition to the near field, there is
also a far-field interaction among resonators, represented by
� = 1

2DT D. The far-field interaction is a direct consequence
of energy conservation. Because all resonators couple to the
same radiation fields and their radiation amplitudes add up
coherently, the resonators need to coordinate with each other
in order to comply with the energy conservation law. This
coordination is reflected by the far-field interaction term �,
which is the key to the far-field superradiant effect.

The amplitudes of reflected lights are given by

Sout = CSin + Da, (3)

where C is a m × m matrix representing the direct transmission
from the incident to the outgoing channels without routing
through the resonators.
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We start by considering a faithful analog of quantum
emitters: N identical resonators couple to a single radiation
channel. Without any near-field interaction, � = (ω0 + i

γ0

2 )I
is diagonal, where I is an N -dimensional identity matrix.
The coupling to the channel is identical for all resonators
D = (

√
γc,

√
γc, . . . ,

√
γc), where γc is the coupling rate.

First, we briefly review the superradiant emission. To study
the emission, we assume no incident light Sin = 0. For a single
resonator alone, using Eqs. (2) and (3), it is easy to show
that the amplitude of an excited resonator decays as |ai |2 ∼
exp[−(γ0 + γc)t]. With N resonators together, the amplitude
decays as |ai |2 ∼ exp[−(γ0 + Nγc)t]. The enhanced decaying
rate due to the in-phase oscillation of all resonators directly
leads to an emission intensity N times stronger for each
resonator, and N2 stronger for all resonators together.

We now focus on the superradiant absorption in the
presence of an incident field Sin. The superradiant in-phase
oscillation of resonators has more complex consequences on
absorption. As a reference for comparison, the absorption of a
single resonator alone is

As(ω0) = 4γ0γc

(γ0 + γc)2
. (4)

For N resonators, we choose C = −1 such that D is real for
Eq. (3). We take d

dt
= iω. Equation (1) then becomes

a = [
i(ωI − �) + 1

2DT D
]−1

DT Sin. (5)

Substituting Eq. (5) into Eq. (3), we have

Sout = −Sin + D
[
i(ωI − �) + 1

2DT D
]−1

DT Sin. (6)

Therefore

Sout

Sin
= −1 + D

[
i

(
ω − ω0 − i

γ0

2

)
I + 1

2
DT D

]−1

DT . (7)

DDT is a scalar representing the summation of all coupling
rates. Using Eq. (7), we obtain the reflection R = Sout/Sin,

|R(ω)|2 = (ω − ω0)2 + (
γ0

2 − 1
2DDT

)2

(ω − ω0)2 + (
γ0

2 + 1
2DDT

)2 . (8)

Then the absorption is

AN (ω) = 1 − |R(ω)|2 = γ0DDT

(ω − ω0)2 + (
γ0

2 + 1
2DDT

)2 (9)

with a peak value at the resonance frequency

AN (ω0) = 4γ0DDT

(γ0 + DDT )2
, (10)

where DDT = Nγc. Comparing Eqs. (4) and (10), we can
see that N resonators behave as if they were just a single
“macroresonator” with a coupling rate enhanced by N times.
We next discuss three different regimes of superradiant
absorption below.

First, for weakly absorptive resonators γ0 � γc, the su-
perradiance greatly suppresses the absorption. The absorption
of a single resonator when alone is As(ω0) ≈ 4γ0/γc. Using

Eq. (10), the total absorption of N resonators is

AN (ω0) ≈ 1

N

4γ0

γc

= As(ω0)

N
. (11)

The absorption of the individual resonator in the N -resonator
system is suppressed by N2 times:

A′
s(ω0) = AN (ω0)

N
= As(ω0)

N2
. (12)

This suppression effect is in great contrast to the enhancement
effect in the emission. It is caused by the N -fold enhanced
coupling rate, which drives the resonator further away from the
critical-coupling condition and leads to a weaker absorption.
It is interesting to recognize that for a single weakly absorptive
resonator alone, if we increase the coupling rate by N times,
the absorption can only be reduced by N times, instead of
N2 times. Here the superradiant suppression of N2 times
is a coherent effect due to the far-field interaction among
resonators.

Second, for strongly absorptive resonators γ0 � Nγc,
above coherent effect is quenched. In this regime, a single
resonator’s absorption is As ≈ 4γc/γ0 when it is alone. For N

resonators, Eq. (10) gives us a total absorption AN = NAs ,
a simple incoherent summation of N resonators. Individual
resonators in the N -resonator system have the same absorption
as the case when they are alone. In other words, the absorption
of resonator is not affected by the presence of others.

Lastly, Eq. (10) also shows a superradiance-induced trans-
parency effect: When N → ∞, the total absorption ap-
proaches zero independent of the values of γ0 and γc [Fig. 1(e)].

To demonstrate the above superradiant absorption effects,
we perform simulations by numerically solving the full-wave
Maxwell’s equations. The nanoresonator is based on graphene
ribbons. Graphene can be modeled using surface conductivity.
Under random phase approximation, conductivity of graphene
can be expressed in intraband and interband parts [29]. For
the frequency range when �ω � EF , the interband part can
be neglected leaving only the intraband part as

σ intra
s = 2e2kBT

π�2
ln

(
2 cosh

EF

2kBT

)
i

ω + iτ−1
, (13)

where EF is chemical potential and τ is relaxation time. Thus,
conductivity of graphene is expressed in Drude-like form.
The effective permittivity of graphene used for numerical
simulation is obtained as [30]

ε(ω) = 1 + i
σs

ε0ω

, (14)

where 
 is the thickness of graphene. This equation is in
identical form to the Drude model equation where plasma
frequency can be expressed as

ωp =
[

2e2kBT

π�2ε0

ln

(
2 cosh

EF

2kBT

)]1/2

. (15)

In our simulation, 
 = 1 nm, EF = 0.4 eV, leading to plasma
frequency ωp = 2.3×1015rad/s.

A 250-nm-wide ribbon has a fundamental resonant mode
with a free-space wavelength around 20 μm [Fig. 1(a)].
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FIG. 1. (Color online) Superradiant absorption in graphene ribbon nanoresonators, for weakly [(a),(b)] and highly [(c),(d)] absorptive
cases. (a) Absorption by a single ribbon with a low collision frequency 5×109 s−1. (b) The superradiance of five ribbons suppresses the total
absorption by five times (dashed line). Individual ribbon’s absorption (solid line) is suppressed by 25 times. Inset: the schematic of the structures
(not to scale). Middle inset: the field distribution of the superradiant mode. (c) Absorption by a single ribbon with a high collision frequency
1.25×1014 s−1. (d) The superradiance of five ribbons enhances the total absorption by five times (dashed line). Individual ribbon’s absorption
(solid line) remains the same. The substrate has a refractive index n = 2 and a thickness 2400 nm. Each ribbon is 250 nm wide, 1 nm thick,
and infinitely long. The simulation domain is 10 μm wide. (e) The total absorption as a function of N calculated using Eq. (10). Independent
of the ratio of the absorption γ0 and coupling γc rates, transparency is induced by the superradiance with increasing N .

Since the electric fields are tightly confined to the edges of
ribbons, the near-field interaction is minimal even when they
are placed closely. These properties are difficult to achieve
in conventional dielectric materials. In the simulations, a
transverse magnetic plane wave is normally incident from the
top. A large computational domain is used to ensure sufficient

spacing between ribbons. The spacings between ribbons can
be equal [Fig. 1(b)] or random [Fig. 1(d)] as long as near-field
interactions remain minimal. The specific boundary conditions
do not affect the physics. A periodic boundary condition is used
while perfect reflecting boundary conditions would produce
the same effects.
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FIG. 2. (Color online) (a) Single ribbon having absorption close to 100%. (b) Superradiant-induced transparency using 40 identical ribbons.
The computational domain is 18 μm with a periodic boundary condition. The collision frequency is γ = 1.25×1011 s−1 and the doping level
is 0.4 eV. The ribbon width is 250 nm on 2.5 μm thick substrate (n = 2).

First, we study the weakly absorptive case when γ0/γc � 1.
The superradiance of five ribbons [Fig. 1(b) inset] suppresses
the individual ribbons’ absorption by 25 times [solid line,
Fig. 1(b)] compared to when they are alone [Fig. 1(a)]. The
total absorption of five ribbons [dashed line, Fig. 1(b)] is
only 1/5 of the absorption of a single ribbon alone. For the
strongly absorptive regime γ0/γc � 1, we use a high collision
frequency of graphene to increase the absorption rate γ0.
In this case, the superradiance barely affects the individual
resonators’ absorption [solid line, Fig. 1(d)] compared to that
of a single ribbon alone [Fig. 1(c)]. The total absorption of
five ribbons is enhanced by five times as a result of incoherent
addition [dashed line, Fig. 1(d)].

When N is sufficiently large, the superradiance induces
a transparency effect with the absorption approaching zero.
Such transparency effect is independent of the ratio of γ0 and
γc [Fig. 1(e)]. The simulation of superradiance-induced trans-
parency is shown in Fig. 2. When the absorption rate is close
to the coupling rate, a single graphene resonator has a high
absorption above 90% [Fig. 2(a)]. For 40 identical ribbons,
the superradiance significantly increases the coupling rate. As
a result, the absorption is reduced close to zero [Fig. 2(b)].

In the above discussion of the direct analog of quantum
emitters, we have intentionally avoided the near-field inter-
action. In fact, near-field interactions when properly man-
aged can also create superradiance. The near-field elements
�ij (i 
= j ) in the Hamiltonian � hybridize N resonators to
form a new set of eigenmodes Ua, where U is a unitary
transformation that diagonalizes �. The new eigenmodes
couple to the free-space radiation with a coupling strength
UDT . We next show that if all �ij (i 
= j ) have the same sign,
the superradiance always occurs with all resonators oscillating
in-phase. Moreover, this superradiant mode will either have
the highest or the lowest eigenfrequency.

It is straightforward to show that �ij (i 
= j ) can be
expressed in real numbers if the system preserves the time-
reversal symmetry. To see this, we write the resonators’
fields in real functions, which is always possible for standing
waves. Then, the time-reversal operator T has no effect on
the fields, which means that the Hamiltonian matrix satisfies
T � = �T . Therefore � must be real. Here we have neglected

the absorption without affecting the conclusion. In addition,
energy conservation requires �ij = �∗

ji [27], which leads to
�ij = �ji .

Next, we show that if �ij (i 
= j ) > 0, the superradiant
mode always exists at highest eigenfrequency. For the nor-
malized eigenmode with the highest frequency, we can write
it as |s〉 = ∑

i=1,K ci |ai〉 − ∑
1=K+1,N ci |ai〉 with positive

and real ci when the system preserves the time-reversal
symmetry. Now we define another state |x〉 = ∑

i=1,K ci |ai〉 +∑
i=K+1,N ci |ai〉, and evaluate

ρ ≡ 〈s|�|s〉 − 〈x|�|x〉 = −4
N∑

i=K+1

K∑
j

cicj�ij (16)

Since |s〉 is the eigenmode with the highest frequency, the
variational theorem requires ρ � 0. However, the coefficients
on the right-hand side of Eq. (16) determine that ρ must
be nonpositive. Therefore ρ = 0 and N = K , i.e., all N

resonators are oscillating with the same phase. Similarly, we
can show that if near-field interactions are all negative �ij < 0,
the superradiance mode always exists and is located at the
lowest eigenfrequency.

For numerical simulations, we configure the spatial arrange-
ment of graphene ribbons to tune their near-field interactions.
Figure 3(a) shows the distribution of the electric field around a
graphene ribbon resonator. The near-field interaction is deter-
mined by the field overlap

∫
Vj

Ei(�r)Ej (�r)[1 − ε(�r)]d�r , where
Ei and Ej are the electric fields generated by the ith [red lines,
Figs. 3(b) and 3(c)] and j th [blue lines, Figs. 3(b) and 3(c)]
resonators, respectively. The integration is performed on the
site of the j th resonator Vj . The dielectric constant of graphene
is negative. For a side-by-side configuration [Fig. 3(b)], the
opposite directions of the fields lead to �ij < 0. For a
top-bottom configuration, the aligned fields lead to �ij > 0.

To highlight the near-field effect in the simulation, we de-
tune the resonant frequencies of N ribbons. The detuning sup-
presses the far-field interaction. But the near-field interactions
are made strong enough to survive the detuning and become
the main mechanism responsible for the superradiance. For
five ribbons in a side-by-side configuration, all �ij < 0. The
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FIG. 3. (Color online) Near-field interactions among nearby graphene ribbons. (a) The electric field distribution of a ribbon resonator. (b)
Negative interaction in the side-by-side configuration. The field generated by resonator i (red dashed arrow) is in the opposite direction of that
of resonator j (blue arrow). (c) Positive interaction in the top-bottom configuration where fields are in the same direction.

superradiant mode creates a broad absorption peak [Fig. 4(b)]
at the lowest frequency with all resonators oscillating in-phase
[Fig. 4(a)]. It also has a much broader bandwidth compared to

those of individual resonators alone [red lines, Fig. 4(b)]. The
bandwidth broadening is a direct consequence of the enhanced
superradiant coupling.
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FIG. 4. (Color online) Near-field superradiance. (a) The electric field distribution of the superradiant mode in the side-by-side configuration.
Ribbons (white bars) are spaced by 10 nm. Their widths are 280, 310, 340, 370, and 400 nm from the left to the right. (b) The superradiant
mode has the lowest frequency (blue line). (c) The superradiant mode of five ribbons with widths 400, 385, 370, 355, and 340 nm from the
top to the bottom. The spacing is 130 nm. (d) The superradiant mode has the highest frequency (blue line). The size of simulation domains for
(a) and (c) are 2.24 and 1.5 μm, respectively. The collision frequency is 2.5×1012 s−1. Red lines in (b) and (d) are the absorption spectra of
individual ribbons when they are alone.
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FIG. 5. (Color online) (a) Absence of superradiant mode in five ribbons arranged with mixed positive and negative near-field interactions.
(b) The schematic of the structure. (c)–(f) The electric field distributions of resonances, showing no in-phase oscillation. The collision frequency
is 2.5×1011 s−1.

In contrast, for five ribbons in a top-bottom configuration
[Fig. 4(c)], all �ij > 0. The superradiant mode [Fig. 4(c)]
creates a broad absorption peak at the highest frequency
[Fig. 4(d)], again featuring broadened bandwidth. When the
near-field interactions are not properly managed with mixed
signs such as the case shown in Fig. 5(b), there is no
superradiant mode [Fig. 5(a)]. None of the resonant modes
[Figs. 5(c)–5(g)] shows the in-phase oscillation.

Similar to the far-field case, the near-field superradiance
has the same effect on light absorption. Unlike the far-field
superradiance, the coupling rate typically increases by less
than N times. To show this, we first note that the total
coupling rates of all resonators are conserved despite the
hybridization of resonators due to near-field interactions.
Without near-field interactions, the total coupling rates to
each channel are given by the diagonal elements of the
matrix DDT . With near-field interactions, the new coupling
rates of the hybridized eigenstates are D′ = DU−1. The
total coupling rates remain the same, D′D′T = DDT . The
near-field interaction only redistributes coupling rates among
resonances. The superradiant mode has to enhance its coupling
at the expense of decreased coupling for other modes. In the
far-field case, the superradiant mode is the only mode coupling
to the free space and thus takes the entire coupling rate, leading
to an N -fold enhancement. For the near-field case, other modes
are typically not completely dark and the coupling rate of the
superradiant mode normally does not increase by N times.

As a final remark, we discuss potential applications of
superradiance in solar cells and photodetectors. Most sub-
wavelength nanoresonators have very weak coupling to the free
space because of their extremely small sizes. The imbalance
of the absorption and the coupling rates leads to overall weak
absorption, which limits the performance of the conversion
from photons to charge carriers. The enhanced coupling rate
in superradiance could allow nanoresonators to operate closer
to the critical-coupling condition, where the absorption and
coupling rates are balanced. For example, graphene is a
highly absorptive material. But one still needs to rely on
optical resonances in order to achieve 100% absorption in
a single layer. For this purpose, the coupling rate of graphene

resonators needs to be greatly enhanced to match the strong
absorption rate. A recent proposal [20] showed the enhance-
ment of coupling through careful choices of materials, such
as a low-index substrate (n = 1.45) and a high doping
level 0.4 eV. These choices turn out to be experimentally
difficult, particularly for the midinfrared spectral range where
low-index transparent materials are rare. Alternatively, we
could use superradiance to enhance the coupling rate. The
material requirement can be relaxed. For instance, Fig. 6
shows the perfect absorption with the superradiance of four
graphene ribbons doped only at 0.2 eV on a high-index Si
substrate making it much easier to achieve in experiment
because of easy fabrication and excellent infrared transparency
in Si.
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FIG. 6. (Color online) Perfect absorption achieved by the super-
radiance of four graphene ribbons. The graphene ribbons are doped at
a low level of 0.2 eV and sit on a 2-μm-thick Si (n = 3.42) substrate.
The widths of ribbons are 45, 60, 75, and 90 nm with 5 nm spacing.
The periodicity is 315 nm. The substrate is on a reflecting mirror.
ωp = 1.62×1015 rad/s, and collision frequency γ = 4.5×1012 s−1.
The superradiance creates an absorption peak with 100% absorption.
Moreover, the peak has enhanced bandwidth compared to individual
ribbons alone (red lines, Fig. 6).
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