
Quantum scattering theory of a single-photon
Fock state in three-dimensional spaces
JINGFENG LIU,1,2 MING ZHOU,2 AND ZONGFU YU2,*
1College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China
2Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin 53706, USA
*Corresponding author: zyu54@wisc.edu

Received 3 June 2016; revised 14 July 2016; accepted 15 August 2016; posted 16 August 2016 (Doc. ID 267662); published 7 September 2016

A quantum scattering theory is developed for Fock states
scattered by two-level systems in three-dimensional free
space. It is built upon the one-dimensional scattering
theory developed in waveguide quantum electrodynamics.
The theory fully quantizes the incident light as Fock states
and uses a non-perturbative method to calculate the scatter-
ing matrix. © 2016 Optical Society of America
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We develop a theory to solve the quantum scattering problem
of Fock states in three-dimensional (3D) free spaces. It can
solve the scattering problem of Fock-state light in the presence
of any number of two-level systems (TLSs) in arbitrary spatial
configurations. Our work is inspired by recent develop-
ment in waveguide quantum electrodynamics (QED) [1–13].
Compared to approximated theories that treat the incident
light as semi-classical fields, methods developed in [1–3] treat
the incident field explicitly as Fock states and use a non-
perturbative method to solve the scattering problem. As a re-
sult, they not only provide exact solutions, but also can solve
multi-photon problems [4,8,11,14–25]. However, these meth-
ods [1–5,7–9,17,18,20,26,27] only apply to a one-dimensional
(1D) space, such as a waveguide. Here, we extend the existing
1D theory to the 3D free space. Although we illustrate our
theory based on single photons, the framework is compatible
with multi-photon problems.

We start with a single TLS and then discuss the case of
multiple TLSs in free space. The Hamiltonian for a TLS in
free space has a rather simple form:

H � ℏωeσ
†σ �

X
k

ℏωka
†
kak �

X
k

iℏgk�a†kσ − akσ†�: (1)

The first and the second terms are the free Hamiltonian of
a TLS and free-space photons, respectively. The third term
describes the interaction between them under the dipole and
rotating-wave approximations. Here, ℏ is a reduced Planck con-
stant, and i � ffiffiffiffiffi

−1
p

. ωe is the transition frequency of the TLS.
σ† and σ are the raising and lowering operator, respectively.
ωk and k are the angular frequency and the wavevector of

photons, respectively. a†k and ak are the bosonic creation and
annihilation operator of the photons, respectively. The cou-
pling coefficient is gk � d • ek

ffiffiffiffiffiffiffiffiffiffiffiffi
ωe

2ℏε0L3
;

q
where the transition

dipole moment is d , and ek is the polarization of the light.
L3 is the normalization volume.

Our strategy is to convert the 3D problem to a form that
allows us to apply the method in a 1D waveguide QED. We
consider the 3D continuum as many channels, or “waveguides.”
Each channel represents a plane wave with a distinct direction.
The light-TLS interaction in a channel can be treated as a wave-
guide QED problem, which has been successfully solved [1–3].

To implement the above strategy, we start by first discretizing
the 3D continuum. It is realized by using a periodic boundary
condition in the x–y plane [Fig. 1(a)]. The period is L. At the
end of the derivation, we will take the limit of L → ∞ to remove
the effect of this boundary condition. Because of the periodicity,
a normally incident photon can only be scattered to a set of
discrete directions. These directions are defined by the waves’
in-plane wavevectors kxy � �mx; my�2π∕L, where mx;y are inte-
gers [Fig. 1(b)].We define these directions as channels. As a con-
vention of the notation, the channel �mx; my� in the upper semi-
infinite space also includes the waves in lower semi-infinite space
in the direction of �−mx; −my�2π∕L. Channels are all located
within the circle of ke � ωe∕c for the interested frequency range
around the resonant frequencyωe. The total number of channels
is N � π⌊L∕λe⌋2, where λe � 2π∕ke is the resonant wave-
length. The floor operator ⌊A⌋ gives the largest integer smaller
than A. There are also two propagation directions in each
channel, which are labeled with subscripts f (forward) and b
(backward). There are also two polarizations in each channel.
Using channels, we can convert the Hamiltonian to

H � ℏωeσ
†σ �

XN
n�1

X
k

ℏωk;n�a†k;nf ak;nf � a†k;nb ak;nb�

�
XN
n�1

X
k

iℏN�θn;φn�gk ��a†k;nf � a†k;nb�σ

− �ak;nf � ak;nb�σ†�: (2)

It is important to note that the wavenumber k is a scalar
now because the information of the propagation direction is
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absorbed into the channel definition. Because of the periodic
boundary condition, we need to normalize the coupling coef-
ficient with a factor N�θn;φn� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cos2φn − sin

2φn�∕ cos θn
p

,
where θn and φn are the polar and azimuthal angles of the nth
channel, respectively [28,29].

To solve for the spatial wavefunctions, we further convert
the Hamiltonian to a real-space representation by applying
the following Fourier transformation:

a†k;nf ∕b �
1ffiffiffi
L

p
Z

∞

−∞
dξa†nf ∕b�ξ� exp�ikξ�; (3a)

ak;nf ∕b �
1ffiffiffi
L

p
Z

∞

−∞
dξanf ∕b�ξ� exp�−ikξ�; (3b)

where ξ is the spatial coordinate alone the nth channel, as
shown in Fig. 1(c). The operator a†nf ∕b�ξ� creates a forward or
backward moving photon at location ξ in the nth channel. This
transformation has been used for the scattering theory in a 1-D
continuum, such as waveguide QED [2,3]. Substituting Eq. (3)
into Eq. (2), we get the real-space Hamiltonian

H � ℏωeσ
†σ �

XN
n�1

Z �∞

−∞
dξ

��
�−iℏc�a†nf �ξ�

d
dξ

anf �ξ�

� �iℏc�a†nb�ξ�
d
dξ

anb�ξ�
�

� iℏgnδ�ξ���a†nf �ξ� � a†nb�ξ��σ − �anf �ξ� � anb�ξ��σ†�
�
;

(4)

where c is the speed of light, and gn �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�cos2 φn − sin

2 φn�∕ cos θn
p

gk. δ�ξ� is the Dirac delta
function.

For a single photon, the eigenstate of the Hamiltonian in
Eq. (4) can be written as

jϕi�
�XN

n�1

Z
dξ�ϕnf �ξ�a†nf �ξ��ϕnb�ξ�a†nb�ξ��� eσ†

�
j0; gi;

(5)

where j0; gi represents the ground state. e is the probability
amplitude of the TLS in the excited state; ϕnf ∕b�ξ� are the
spatial distributions of the amplitudes in the channels. We
can now directly evaluate e and ϕnf ∕b�ξ� using the time-
independent Schrödinger equation H jϕi � ℏωjϕi and obtain

−ic
d
dξ

ϕnf �ξ� � ignδ�ξ�e � ωϕnf �ξ�; (6a)

ic
d
dξ

ϕnb�ξ� � ignδ�ξ�e � ωϕnb�ξ�; (6b)

ωee − i
XN
n�1

gn�ϕnf �0� � ϕnb�0�� � ωe: (6c)

These linear differential equations can be easily solved.
Specifically, Eq. (6a) reduces to −ic d

dξ ϕnf �ξ� � ωϕnf �ξ� for
ξ ≠ 0, which has a simple solution:

ϕnf �ξ� � Fneikξθ�−ξ� � tneikξθ�ξ�; (7a)

where the wave number k � ω∕c. Similarly, for the backward
directions, Eq. (6b) leads to

ϕnb�ξ� � rne−ikξθ�−ξ� � Bne−ikξθ�ξ�: (7b)

In a scattering process, coefficients Fn and Bn can be inter-
preted as the incident amplitudes of the photon in the forward
and backward directions, respectively. tn and rn represent the
transmitted amplitudes in the forward and backward directions,
respectively. These coefficients must satisfy the boundary con-
dition at the location of the TLS: Fn � tn � rn � Bn. The
boundary conditions at infinity are determined by the incident
condition.

Now we consider a single-photon incident in the l th chan-
nel in the forward direction. Then we have Fn � δnl and
Bn � 0. The wavefunctions jϕnf ∕b�ξ�j are schematically shown
in Fig. 1(d) for a channel n ≠ l . The forward and backward
scattering amplitudes are represented by tn and rn, respectively.
Using Eqs. (6) and (7), we can calculate these coefficients as

tn �
−igng l∕c

�ω − ωe� � iΓ0∕2
� δnl ; (8a)

rn �
−igng l∕c

�ω − ωe� � iΓ0∕2
; (8b)

e � −ig l
�ω − ωe� � iΓ0∕2

; (9)

where Γ0 � d 2ω3
e ∕�3πℏε0c3� is the spontaneous emission rate

of the TLS in free space.
Now we have the complete spatial wavefunction of the ei-

genstates, from which we can obtain all the characteristics of
the scattering process. We will briefly discuss a few examples

Fig. 1. (a) Periodic boundary conditions are set up for the derivation
purpose. A single TLS is in the free space. The period is L. We take
L → ∞ at the end of the derivation. (b) Distribution of channels in the
k-space. Due to the periodicity, the scattered light has discrete wave-
vectors in the kxy-plane, represented by dots. (c) Spatial operator
a†nf ∕b �ξ� creates a forward or backward moving photon at the location
ξ in the nth channel. (d) Schematic of the magnitude of the spatial
wavefunction jϕnf ∕b �ξ�j for the forward (green line) and backward
(purple line) directions in the nth channel.

Letter Vol. 41, No. 18 / September 15 2016 / Optics Letters 4167



below, although the results can also be obtained using many
existing theories for this simple case.

The spatial distribution of the scattered photon can be di-
rectly evaluated by summing the amplitudes in all channels
ϕp�r� �

PN
n�1�ϕnf �ξn� � ϕnb�ξn��. ξn is calculated by projec-

ting the position r onto the nth channels. Specifically, we
consider a TLS with a dipole moment induced by a linearly
polarized incident light. The incident photon propagates along
the z axis and is polarized alone the x direction [into the plane
in Fig. 2(a)]. Figure 2(a) shows the real part of the scattering
wavefunction ϕp�r� in the xy plane. It clearly shows a dipole
radiation profile.

We can also easily calculate the differential and total cross
sections. For example, the total scattering cross section [30] is

σ�ω� �
PN

n�1�t†n�tn �
PN

n�1�r†n�rn
1∕L2

: (10)

Substituting rn and tn into Eq. (10), we obtain

σ�ω� � 3λ2e
2π

�Γ0∕2�2
�ω − ωe�2 � �Γ0∕2�2

: (11)

The cross-sectional spectrum is shown in Fig. 2(b), which
shows the typical Lorentzian lineshape with a bandwidth
defined by the spontaneous emission rate Γ0.

The complete wavefunction also allows us to calculate the
group delay τ � dφ∕dω for the photon when scattered by
a TLS. The scattering phase φ can be directly evaluated from
the wavefunction as φ�ω� � arctanf−Γ0∕�2�ω − ωe��g, which
leads to a Winger time delay τ � Γ0∕2

�ω−ωe�2��Γ0∕2�2 .
All these results confirm the calculation based on semi-

classical scattering theories [31–33]. Below, we further
show that the theory easily accommodates multiple TLSs.
Specifically, we use two TLSs as an example to illustrate the
method. The Hamiltonian can be written as

H �
X2
m�1

ℏωmσ
†
mσm � ℏΩ12�σ†1σ2 � σ†2σ1�

�
X
k

ℏωka
†
kak �

X2
m�1

X
k

iℏgmk�a†kσm − akσ†m�; (12)

where Ω12 is the strength of the dipole–dipole interaction be-
tween the two TLSs [34,35]. Following a similar procedure, we
convert it to a real-space representation using the channels

H �
X2
m�1

ℏωmσ
†
mσm � ℏΩ12�σ†1σ2 � σ†2σ1�

�
XN
n�1

Z
∞

−∞
dξ

�
�−iℏc�a†nf �ξ�

d
dξ

anf �ξ�

� �iℏc�a†nb�ξ�
d
dξ

anb�ξ�
�

� iℏ
XN
n�1

Z
∞

−∞
dξ

X2
m�1

gn;mδ�ξ − ξn;m�f�a†nf �ξ�

� a†nb�ξ��σm − �anf �ξ� � anb�ξ��σ†mg; (13)

where ξn;m is the projected location of the mth TLS in the
nth channel. The general form of the eigenfunction for a single
excitation can be written as

jϕi �
XN
n�1

Z
dξf�ϕnf �ξ�a†nf �ξ� � ϕnb�ξ�a†nb�ξ�� � e1σ

†
1

� e2σ
†
2gj0; g1; g2i; (14)

where j0; g1; g2i is the ground state.
The forward and backward wavefunctions have three dis-

tinct segments, as divided by two TLSs:

ϕnf �ξ� � eikξ�Fnθ�ξn;1 − ξ� � Cnθ�ξ − ξn;1�θ�ξn;2 − ξ�
� tnθ�ξ − ξn;2��; (15a)

ϕnb�ξ� � e−ikξ�rnθ�ξn;1 − ξ� � Dnθ�ξ − ξn;1�θ�ξn;2 − ξ�
� Bnθ�ξ − ξn;2��. (15b)

All the coefficients Fn; Cn; tn; rn; Dn; and Bn can be ob-
tained by solving the Schrödinger equation. They are also
constrained by the boundary conditions at the locations of
the two TLSs and at infinity.

Similar to the single TLS case, Fn and Bn represent the
incident photon in the forward and backward directions, re-
spectively. Except for the incident directions, as shown sche-
matically in Fig. 3(b), Fn � Bn � 0 for all other channels.
tn and rn are the amplitudes of the scattered photon in the
forward and backward directions, respectively.

Different from the single TLS case, here we have addi-
tional terms: Cn and Dn. They are the amplitudes of the
waves between the two TLSs. These waves induce the radiative
interactions among the TLSs. They are responsible for

Fig. 2. (a) Snapshot of the real part of the scattered amplitude ϕp�r�
for a single photon scattered by a TLS in the x–y plane where z � 0.
The amplitude scales as 1∕r with r being the distance to the TLS.
(b) Spectrum of the scattering cross section.

Fig. 3. (a) Schematic of a channel with two TLSs. The first TLS is
located at the origin; thus, ξn;1 � 0 for all channels. (b) Schematic of
the magnitude of the photon wavefunction jϕnf ∕b �ξ�j for the forward
(green line) and backward (purple line) directions in the nth channel.
The distance between two TLSs is 0.15λe .

4168 Vol. 41, No. 18 / September 15 2016 / Optics Letters Letter



collective effects, such as the superradiant spontaneous emis-
sion [36–40].

We now consider the specific example of a single photon
scattered by two identical TLSs located at x � 0 and at x �
0.15λe with λe being the resonant wavelength. The directions
of their dipole moments are induced by the incident light.

Figure 4 shows the spectra of the cross section calculated
from the quantum scattering theory. For a single-photon inci-
dent from the normal direction [Fig. 4(a)], the spectral band-
width is 1.85Γ0, which is nearly double that in the case of the
single TLS [Fig. 2(b)]. This bandwidth broadening is the
manifest of the superradiance in the scattering process. The
superradiance can be more clearly observed by examining
the complex amplitudes e1 and e2 of the two TLSs, which
are shown as the inset of Fig. 4(a). They show the same phase
and amplitude.

When a single photon is incident in the axial direction
[Fig. 4(b)], a second sharp peak appears in the spectrum of
the cross section. The central frequency of the narrow peak
is ωe − 0.74Γ0. This peak is associated with the sub-
radiant oscillation of the two TLSs. The excitation amplitudes
of the two TLSs exhibit opposite phases, as shown by the inset
of Fig. 4(b). The opposite-phase oscillation strongly reduces
the radiation rate, resulting in an extremely narrow linewidth
which reaches to 0.16Γ0. It also leads to a larger cross section
σ � 2.5σ0 which is larger than the linear addition for two
TLSs, i.e., 2σ0. Since the two TLSs have opposite phases, this
oscillation mode cannot be excited from the normal direction
and, thus, is absent in the spectrum shown in Fig. 4(a).

In conclusion, we developed a quantum scattering theory
for the quantum transport of Fock states in free space. We illus-
trated our theory using the simple case of one TLS in free space.
The theory can accommodate any number of TLSs, which we
illustrate using a case of two TLSs in free space.
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