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Light trapping in photonic crystals

Ken Xingze Wang,ab Zongfu Yu,bc Victor Liu,bd Aaswath Raman,b Yi Cuief

and Shanhui Fan*b

We consider light trapping in photonic crystals in the weak material absorption limit. Using a rigorous

electromagnetic approach, we show that the upper bound on the angle-integrated absorption

enhancement by light trapping is proportional to the photonic density of states. The tight bound can be

reached if all the states supported by the structure are coupled to external radiation. Numerical

simulations are used to illustrate the theory and the design of both two- and three-dimensional

photonic crystals for the purpose of light trapping. Using the van Hove singularities, the angle-integrated

absorption enhancement in two-dimensional photonic crystals could surpass the conventional limit over

substantial bandwidths.
Broader context

Commercial solar cells use light trapping to maximize solar absorption in the absorbing layers for improved efficiency and reduced cost. The upper limit of the
absorption enhancement due to light trapping is 4n2, where n is the refractive index of the absorbing semiconductor, according to ray optics. This limit could be
surpassed in nanostructured solar cells, however, typically only for limited bandwidths and incident angular ranges in any high-index absorbing semiconductor
such as crystalline silicon. For broadband and omnidirectional absorption enhancement beyond 4n2 with large n, one promising candidate for the nano-
structures is the photonic crystal in which the density of optical states could be signicantly engineered. Using wave optics, we show that the upper limit of the
angle-integrated light trapping absorption enhancement is proportional to the density of states in any given structure. To fully exploit the benets of an elevated
density of states, one needs to consider electromagnetic mode overlap and mode coupling in the structure, as well as the restrictions on the density of states
engineering, among yet many other practical considerations. Our work envisions the theoretical possibility and provides the design guidelines of photonic
crystal absorbers beyond the conventional limits by means of nanophotonic light trapping.
1 Introduction

Photon management strategies, including light trapping, have
been tremendously successful in efficiency improvement and
cost reduction in practical solar cells.1,2 With the emergence of
nanotechnology and the ability of molding the ow of photons,
signicant research efforts also focus on the tailoring and
enhancement of sunlight absorption at a nanoscale, for the
improvement of both short-circuit current and open-circuit
voltage.3–24

In the vast majority of previous studies on light trapping, one
considers a structure that includes a uniform layer of absorbing
material.3–10 Light trapping is then accomplished either by
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introducing surface gratings,5 or by placing additional scat-
tering layers near the absorbing layer.4 In practical crystalline
silicon solar cell design, the uniform layer is a bulk silicon
structure that is typically a few hundred microns thick.25 In
many recent research studies on solar cell light trapping, the
uniform layer can be as thin as a single optical wavelength or
even at a deep subwavelength scale.4 In all these cases, it is
known that the light trapping enhancement limit is related to
the photonic density of states.26 For a bulk silicon cell, this leads
to the well known 4n2 limit,27–29 also referred to as the Yablo-
novitch limit, the Lambertian limit, the ray-optic limit, the
ergodic limit, the bulk limit, the classical limit, the traditional
limit, or the conventional limit. For thin lms, the 4n2 limit can
be modied depending on the details of guided modes in the
lm.4,30,31,35,36 In addition, it has been shown that an elevated
local density of states is an important element for improved
light trapping.13,32,33 That description is consistent with our
wave optics light trapping theory.34 The local density of states
describes the enhancement of absorption at a given spatial
location of the structure. To account for the performance of a
solar cell, one needs to integrate over all spatial points in the
solar cell where absorption occurs. One thus needs to perform
spatial integration of the local density of states, which leads to
the density of states picture that we use in this paper.
Energy Environ. Sci., 2014, 7, 2725–2738 | 2725
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Fig. 1 A 2D photonic crystal structure consisting of a square lattice of
dielectric rods in air. The radius of each rod is 0.2a, where a is the
lattice constant. The dielectric constant of the rods, colored in blue, is
12, with an extremely small imaginary component. In the absorption
simulations, the absorption is obtained through 10 layers of such rods
with the other dimension being infinite and with a perfect mirror at the
bottom. Light is incident on top. In the band structure and overlap
factor calculations, the structure is treated as a lossless 2D photonic
crystal infinite in both dimensions.
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Given the importance of density of states in dening the
light trapping limit, one naturally should look beyond the
relatively simple uniform absorbing layer and consider more
complex medium. In particular, the photonic crystal structure is
known to be able to drastically inuence the density of states,37

and its ability of dispersion and density of states engineering
has been extensively explored and applied to a wide range of
applications.38 However, while light trapping in an absorber
consisting of photonic crystals has been considered before,39–57

the connection between the density of states and the light
trapping limit in a photonic crystal has not been explicitly
established.

In this work, we quantitatively establish the connection
between the absorption enhancement and the density of states,
and use this relationship to guide photonic crystal absorber
designs. To maximize the absorption by light trapping, one
should aim at maximizing the number of accessible modes
(used interchangeably with states and resonances) supported by
an absorbing structure. Moreover, we show that to take full
advantage of the benet of the photonic density of states, one
need to consider additional issues including accessibility to
these photonic states, as well as the overlap of the photonic
states with the absorber.

This paper is organized as follows: in Section 2, we briey
review both the ray-optic and the wave-optic theory of light
trapping, and derive a direct correspondence between the angle-
integrated absorption enhancement and the photonic density
of states. In Section 3, we numerically study light trapping in
several two-dimensional (2D) photonic crystal absorbers, and
account for the numerical results using the theoretical under-
standing developed in Section 2, highlighting in particular the
requirements to observe signicant density of states effects for
light trapping in photonic crystals. Finally, we discuss three-
dimensional (3D) photonic crystals in Section 4 and conclude in
Section 5.
2 Model systems and theoretical
background
2.1 Model systems

The main aim of our paper is to highlight the unique physics of
light trapping in photonic crystals. As an illustration of the
model system, we consider the structure as shown in Fig. 1. The
structure consists of a photonic crystal with a nite number of
periods in a vertical direction, with a perfect mirror on its
bottom and with light incident from the top. The crystal is
assumed to be of innite extent in the horizontal directions,
and consists of periodic arrays of dielectric elements in air. The
dielectric has a real part of refractive index of n, which is
assumed to be frequency independent throughout the paper,
and a weak absorber with a small absorption coefficient a� 1/d
where d is the thickness of the structure. Throughout the entire
paper we assume a weak absorbing material where single-pass
absorption is negligible. Knowing the absorption enhancement
factor in such a weak absorption limit, one can derive the
enhancement factor where the single-pass absorption is no
2726 | Energy Environ. Sci., 2014, 7, 2725–2738
longer negligible.58,59 Focusing on the weak absorption limit
therefore allows us to focus on illustrating the most prominent
effects of the density of states modication in photonic crystals
on light trapping absorption enhancement.

Real solar cells are of course 3D structures. To simplify
numerical calculations, however, many theoretical studies on
light trapping in solar cells have also considered 2D struc-
tures.5,40,45,46,51,52 By 2D, we refer to structures that are uniform in
a third dimension, and moreover we consider only light prop-
agating within a 2D plane perpendicular to such third dimen-
sion. In this paper we consider both such 2D as well as 3D
photonic crystals.

We will use numerical simulations to calculate the absorp-
tion of light in the conguration shown in Fig. 1. We will also
contrast the numerical results from photonic crystals to corre-
sponding uniform systems. The corresponding uniform
systems (Fig. 2 and 3) consist of a uniform slab with the same
refractive index n and absorption coefficient a as the dielectric
in the photonic crystal in Fig. 1. The thickness of the uniform
slab, deff, is chosen such that the amount of dielectric materials
per unit area (in 3D) or unit length (in 2D) horizontally is the
same as that of the photonic crystal systems. deff is therefore
typically smaller than the physical thickness, d, of the photonic
crystal. They are related by an area (in 2D) or volume (in 3D)
fraction h:

deff ¼ hd (1)

In all our model or theory, the thickness of the photonic
crystal is chosen or assumed such that deff is at least equal to a
few wavelengths.
This journal is © The Royal Society of Chemistry 2014
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Fig. 3 A dielectric slab structure with a randomly textured front
surface and a back mirror. The equivalent thickness is the same as in
Fig. 2.

Fig. 2 A dielectric slab with flat surfaces. The thickness is equal to the
equivalent thickness of the structure in Fig. 1 so the two structures
contain the same amount of absorbing materials.
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We consider two different corresponding uniform systems.
Fig. 2 shows a slab where both the front and back surfaces are
at, with no mirror at the back surface. And we assume perfect
antireection for all frequencies and all angles on both
surfaces. The absorption of light in such a slab denes the
single-pass absorption, adeff, where a ¼ 2k0Im{n} is the
absorption coefficient of the material, and k0 is the wavevector
of light in a vaccum and Im{n} is the imaginary part of the
refractive index.

The goal of any light trapping structure is to achieve
absorption beyond such single-pass absorption, while keeping
the same amount of the absorbing material. For such light
trapping structures, in 3D, we dene the absorption enhance-
ment factor as

f ðu; q;4Þ¼ Aðu; q;4Þ
adeff

(2)

Here, u, q, and 4 are the frequency, the angle of incident light,
and the polar angle of light, respectively. A is the absorption
coefficient of the structure. There will not be a 4 dependency in
2D.

The second corresponding uniform system represents the
conventional light-trapping structure (Fig. 3), where one
roughens the front surface of the uniform slab, and places a
perfect mirror at the back. The limit of absorption enhance-
ment in such a structure is very well understood, and will be
briey reviewed in Subsection 2.2. The comparison of the
absorption of actual photonic crystal structures, to these two
corresponding uniform systems, both of which are idealized,
serves to highlight the physics and performance potential of
photonic crystal light trapping schemes.
2.2 Ray-optic theory of light trapping

The ray-optic theory describes the conventional light-trapping
structure (Fig. 3). In 3D, when the front surface is a Lambertian
surface, one has the isotropic case where the absorption
enhancement factor for light incident from any angle is the
same, and is equal to 4n2.28 This result is commonly referred to
as the Yablonovitch or 4n2 limit. Here combining with the 2D
results below, we refer all the ray-optic results as conventional
limits. On the other hand, if the front surface is designed such
This journal is © The Royal Society of Chemistry 2014
that the structure can only accept light within a cone with an
apex angle of q, and moreover if one assumes that the
enhancement factor is the same for all incident directions
within that cone, one then has the anisotropic case where the
absorption enhancement factor increases to 4n2/sin2 q.60,61

Both the isotropic and the anisotropic cases above can be
described in a unied fashion by dening an angle-integrated
enhancement factor

F3DðuÞ ¼
ðp=2
0

dq

ð2p
0

d4f ðu; q;4Þcos q sin q (3)

where f(u, q, 4) is dened in eqn (2) above. One can see that for
both the isotropic and anisotropic cases we have F3D ¼ 4pn2.
Moreover, it has been shown that as an upper limit F3D ¼ 4pn2

in fact applies to any light trapping structure of the form of
Fig. 3 with an arbitrary angular response of f(q, 4).6

Since no actual physical light trapping structure has an ideal
isotropic angular response, to compare the performance of a
physical light trapping structure to the conventional limit, it is
imperative that one performs angle integration.6,62 Observing an
enhancement factor beyond 4n2 for a single angle of incidence,
for example, should not be taken as the evidence that one has
overcome the conventional limit.63 In this context, the 4pn2

limit, which is really the conventional limit expressed in an
angle-integrated fashion, is very useful when one needs to
compare the performance of a physical structure to the ray-optic
limit.

The ray-optic theory also describes the conventional light
trapping structure of Fig. 3 in 2D. For the isotropic case the
enhancement factor is

f(u, q) ¼ pn (4)

And the upper limit for the angle-integrated absorption
enhancement factor is

F2DðuÞ ¼
ðp=2
�p=2

dqf ðu; qÞcos q ¼ 2pn (5)

which applies to isotropic as well as anisotropic cells in 2D.
These 2D results are not nearly as well known as the original 4n2

limit in 3D, and moreover, to the best of our knowledge, were
rst derived using the wave-optic theory formalism.5 Therefore
below we provide a bit more details on the derivation of the pn
limit for the 2D isotropic case using ray optics.

For a uniform 2D structure, it is straightforward to obtain a
factor of n from the enhancement of light intensity and another
factor of 2 from a back mirror, following the same approach as
in the derivation of the 4n2 limit.28 For an oblique ray at an angle
q, the path length is enhanced by 1/cos q. The angle-integrated
enhancement of the path length is obtained by an angular
integration over the individual path length enhancement,
multiplied by a weighting factor that depends on the surface
property and the dimension of the problem.64 For a Lambertian
surface, the weighting factor is cos q normalized by an angular
integration over cos q. Therefore, the average path length
enhancement in 2D is
Energy Environ. Sci., 2014, 7, 2725–2738 | 2727
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Table 1 Conventional light trapping limits in 2D and 3D for a single
incidence angle and after angular integration. n is the refractive index
of the weakly absorbing material

Dimension Isotropic Angle-integrated

2D pn 2pn
3D 4n2 4pn2
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ðp=2
�p=2

dq
1

cos q

cos qðp=2
�p=2

dq cos q

¼ p

2
(6)

instead of a factor of 2 in 3D. Multiplying the three enhance-
ment factors, we obtain the pn enhancement for 2D light
trapping.

The different versions of the conventional limits are
summarized in Table 1.
2.3 Wave-optic theory of light trapping

For the same geometry in Fig. 3, the wave-optic light trapping
theory could reproduce the ray-optic results in Table 1. In
addition, the theory could account for more complex structures,
including photonic crystals.

In the wave-optic theory, light trapping is described by the
coupling of incident radiation into the optical modes supported
by the structure. Absorption is enhanced through the aggregate
contribution of these resonances. This physics can be captured
by a statistical temporal coupled-mode theory.4,5,65,66 We assume
that the free space provides N planewave channels and that the
absorbing structure supports M resonances. Each planewave
channel could lead incoming radiation to each resonance, and
each resonance could also leak to each planewave channel. The
coupling between the mth resonance to the planewaves with an
incident wave from the nth channel is described by the following
temporal coupled-mode equation

d

dt
am ¼ jum �

XN
s¼1

gm;s þ g0

2

0
BBBB@

1
CCCCAam þ j

ffiffiffiffiffiffiffiffi
gm;n

p
Sn (7)

The resonance amplitude am is normalized such that |am|
2 is

the electromagnetic energy stored in the resonant mode per
unit area, and the incident planewave amplitude Sn is normal-
ized such that |Sn|

2 corresponds to its intensity. um is the
resonant frequency of the mth resonance. gm,s is the loss rate
from themth resonance to the sth channelcs ˛ {1, 2,., N}. The
loss rate is equal to the in-coupling rate by energy conservation
and time-reversal symmetry. g0 is the loss rate of the resonance
due to intrinsic material absorption.

In a uniform absorber of Fig. 3 whose thickness is suffi-
ciently large so that the resonances completely overlap with the
absorber in space, g0 ¼ ac/n. In a photonic crystal (for example,
in Fig. 1), however, the overlap is generally less than unity.38,67

We dene G to be the overlap or connement factor that
2728 | Energy Environ. Sci., 2014, 7, 2725–2738
characterizes the average overlap of the electric eld with the
weakly absorbing active material. Hence, the intrinsic loss rate
is in general given by

g0 ¼ a
c

n
G (8)

To rigorously derive eqn (8), we could treat the absorption as
a perturbation to a transparent structure and integrate over the
energy loss versus total energy throughout the entire space. This
intrinsic loss rate modication generalizes the wave-optic light
trapping theory over the earlier work.6

From eqn (7), we can calculate the broadband absorption
enhancement by the mth resonance when light is incident from
the nth channel. By summing over the contributions from all M
resonances and N channels in the frequency range of [u, u +
Du], and by comparing the absorption to the single-pass
absorption adeff, we can calculate the angle-integrated absorp-
tion enhancement factor F, which in the k space translates into
a summation over all the channels

F ¼
X
n

fn ¼ 2p

adeffDu

X
m

P
n

gm;ng0P
n

gm;n þ g0

#
2pcG

ndh
rðuÞ (9)

where r(u) ¼M/Du is the spectral density of states, and fn is the
contribution to the enhancement factor from the nth channel. h
is the volume or area fraction of the absorbing material. The

equality is approached if
XN
s¼1

gm;s[g0 for all m, that is, all the

resonances are in the over-coupling regime. Since the material
is weakly absorptive, the equality holds as long as all resonances
are coupled to external radiation, in other words, all photonic
states in the structure contribute to light trapping, and the
averaging over a bandwidth results in the appearance of the
density of states in the enhancement factor F.

Eqn (9) establishes a tight upper limit for absorption
enhancement in light-trapping structures. In a bulk structure, G
¼ 1, h ¼ 1, the various versions of the conventional limit are
readily reproduced by the theory (Table 1).4–6 In particular, the
information in oblique rays in the ray-optic picture is in essence
captured by the coupling between resonances and channels in
the wave-optic picture. If we assume that a resonance couples
equally to all the channels, there will be a cosine factor in the
intensity normalization, which is the same cosine factor for
deriving the factor of 2 enhancement for a Lambertian surface.
As a result, this factor of 2 lies implicitly in the wave-optic
theory.4
2.4 Unique aspects of photonic crystals

The wave-optic theory in Subsection 2.3 points to several unique
aspects of light trapping in photonic crystals. We examine the
most prominent deviations of the optical properties of photonic
crystals from those of bulk structures:

(1) The density of states of a photonic crystal (for example, in
Fig. 1) can differ signicantly from that of the bulk structure (for
example, in Fig. 3).
This journal is © The Royal Society of Chemistry 2014
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(2) For a bulk structure, if its thickness is greater than a few
wavelengths, one can assume complete overlap of the modes
with the absorbing material. In contrast, in a photonic crystal,
the electromagnetic elds do not completely overlap with the
absorbing material, and therefore the modal absorption loss
rate is related to crystal geometries as well as material
constants.

(3) To access all the modes in a bulk structure, one typically
employs surface roughness. In contrast, we will show that a
photonic crystal by itself, with appropriate congurations,
already provides complete access to all its modes even without
surface disorders.

These aspects will be examined in detail in Section 3.
Fig. 5 Projected TM band structure obtained from Fig. 4. The lightline
is given by u ¼ ckx, where kx is the projected wave vector.

Fig. 6 Density of TM states per area for the 2D photonic crystal in
Fig. 1.
3 Detailed aspects of light trapping in
2D photonic crystals
3.1 Relevant aspects of the band structure of a 2D photonic
crystal

As a model system, we start by considering a lossless and
innite 2D photonic crystal consisting of a square lattice of
dielectric rods in air (Fig. 1). The radius of each rod is r ¼ 0.2a,
where a is the lattice constant. The dielectric material has a non-
dispersive dielectric constant of 12, which is close to the value of
silicon or gallium arsenide at optical frequencies.

We use the MPB (MIT Photonic-Bands) package to calculate
the band structure.68 In Fig. 4, we show the band structure of the
photonic crystal along the line segments connecting the high
symmetry points. There exist photonic bandgaps for the TM
(transverse-magnetic) polarization, but not for the TE (trans-
verse-electric) polarization. In order to highlight the features in
the density of states of a 2D photonic crystal, we choose to work
with the TM polarization for all subsequent discussions for 2D.

The same photonic band structure in Fig. 4 can alternatively
be presented as a projected band diagram (Fig. 5), where we
project the 2D band structure u(kx, kz) onto the u–kx plane. The
Fig. 4 Band structure of the photonic crystal in Fig. 1. The first Brillouin
zone of the square lattice is shown in the inset. G denotes the k point
(0, 0), X denotes (0, p/a), and M denotes (p/a, p/a).

This journal is © The Royal Society of Chemistry 2014
shaded regions in Fig. 5 correspond to states in the photonic
crystal, the unshaded region is the gap region. We notice that a
signicant part of the rst band and some parts of the second
band lie below the light line u ¼ ckx. Such a projected band
structure will be useful for the discussion of mode coupling
issues in Subsection 3.5.

We can calculate the density of states of this photonic crystal
by a uniform sampling of all the k-points in the rst Brillouin
zone. In Fig. 6, we observe two bandgaps at frequencies close to
0.3c/a and 0.7c/a, as well as a number of van Hove singularities
where the density of states is divergent.69,70 The van Hove
singularities will be discussed in Subsection 3.3, and the low
frequency limit will be discussed in Subsection 3.4.

For each mode, we can also calculate the overlap factor G

between the electric eld and the dielectric rods using the DtN
(Dirichlet-to-Neumann) method.71 At any given frequency, we
select two k points from the segments connecting G to X to M
and back to G. The selected k points correspond to the two
lemost intersections of horizontal cuts with the band structure
plot in Fig. 4. Fig. 7 shows the overlap factors for such two k
points for a range of frequencies. We observe that, at each
frequency, the modes at different k points tend to have very
Energy Environ. Sci., 2014, 7, 2725–2738 | 2729
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Fig. 7 Overlap factor of the TMmode for two selected k points at each
frequency. The k points are selected from left to right, for example, at a
frequency of 0.2c/a, the first two k points are shown as K1 and K2, in
Fig. 4. Inside the bandgap, the overlap factor is not defined.
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similar overlap factors. In the limiting case at zero frequency,
the eld becomes uniform, and the overlap factors approach the
area fraction h ¼ pr2/a2 z 0.126. The rst and second bands
have quite different overlap factors, which can be explained by
the variational theorem.38 The rst band tends to concentrate
more of its electromagnetic energy in the dielectric, hence the
overlap factors are higher than the area fraction h. Within the
rst band, there is an increase in overlap factors with respect to
frequency, following the trend in the density of states. G is not
dened in the photonic bandgaps, where light propagation and
absorption are forbidden.
3.2 Absorption enhancement factor in the 2D photonic
crystal and comparison to the density of states

We calculate the absorption in a lossy and nite version of the
2D photonic crystal considered in Subsection 3.1, as shown in
Fig. 1. The crystal contains a nite number of periods in a
vertical direction, with a perfect mirror on its bottom and with
light incident from the top. The crystal is assumed to be of
innite extent in the horizontal directions. In the numerical
Fig. 8 Comparison of the angle-integrated light trapping absorption
enhancement factor and its theoretical upper bound for the 2D
photonic crystal in Fig. 1.

2730 | Energy Environ. Sci., 2014, 7, 2725–2738
simulations, we choose an extremely weak attenuation coeffi-
cient a¼ 10�8/d, and this particular numerical value cancels out
aer taking the ratio between the calculated absorption and the
single-pass absorption as dened in eqn (2). The 2D photonic
crystal contains 10 layers in the normal direction of incident
light. Because the absorption is weak and there are a sufficient
number of layers, the density of states and overlap factors can
be well approximated by those calculated in Subsection 3.1 for
the corresponding lossless and innite photonic crystal.

We calculate the absorption enhancement factor f(q) for the
entire range of incident angles q with the Fourier modal method
using the S4 (Stanford Stratied Structure Solver) package.72

From f(u, q), we obtain the angle-integrated absorption
enhancement factor F2D using eqn (5). Numerically, we observe
that F2D is not inuenced by the choice of the number of layers
as long as the number is sufficiently large. We plot F2D in Fig. 8
and compare it with both the density of states bound given by
eqn (9) and the conventional limit of 2pn.

To calculate the density of states bound on the right hand
side in eqn (9), we rst convert the summation in the real space
as an angular integration in 2D to a summation over channels
in the wave vector space. The 2D angle-integrated absorption
enhancement factor can be written as

F2D ¼
ðp=2
�p=2

dqf ðqÞcos q

¼ 1

k0

ð
jkx j\k0

dkxf ðkxÞ
(10)

¼ Dk

k0

X
n

fn (11)

where q is the angle of incidence and

kx ¼ k0 sin q

k0 ¼ u

c

Dk ¼ 2p

L

where L is the lattice constant of the photonic crystal or an
articially imposed periodicity of a bulk structure. Using eqn (9)
and 11, we obtain

F2D #
ð2pcÞ2G
nhu

r2DðuÞ (12)

where r2D(u) is the density of states per unit area.
In Subsection 3.1, we calculate r2D(u) (Fig. 6), as well as G(u)

(Fig. 7) for selected k points. Since the overlap factors G are
approximately equal for different k points at the same
frequency, we simply take an average of the two overlap factors
shown in Fig. 7, and use the average overlap factor G in eqn (12).
With this information and other parameters of the structure, we
can obtain the right hand side expression (2pc)2Gr2D(u)/nhu of
This journal is © The Royal Society of Chemistry 2014
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eqn (12), which gives an upper bound for F2D. We plot this
bound for a range of frequencies in Fig. 8, referring to it as the
“Theoretical Bound” curve.

Fig. 8 veries our theoretical result on the correspondence
between the absorption enhancement and the theoretical
bound, we note in particular the following aspects:

(1) At a few narrow ranges of frequencies, the Yablonovitch
limit is surpassed due to the van Hove singularities in the
photonic density of states. We discuss this further in Subsection
3.3.

(2) Overall the absorption enhancement is below the
conventional limit. We explain this with an effective medium
argument in Subsection 3.4.

(3) The photonic crystal absorber, without gratings or surface
roughness, is itself a very efficient scatterer. In most frequency
ranges above 0.3c/a, there is a close match between the density
of states and the absorption curves, implying that most acces-
sible resonances are excited. Unlike the conventional case of a
uniform slab, there is no need to design surface gratings to
achieve light trapping for photonic crystals. However, on the
other hand, for the rst band at a frequency from 0 to approx-
imately 0.3c/a, the numerically obtained light trapping
absorption enhancement is signicantly lower than its upper
bound imposed by the density of states. This is because many
modes are below the lightline and decoupled from external
radiation, as we have alluded to in the discussion of Fig. 5. In
Subsection 3.5, we investigate this aspect of mode coupling.
3.3 van Hove singularities in the density of states

We could engineer the photonic crystals and take advantage of
the van Hove singularities in the density of states.70 For practical
applications, we might be able to apply the narrowband diver-
gence of the density of states to achieve a strong absorption
improvement, for example, at the bandedge in crystalline
silicon where light trapping is crucial.5,15

van Hove singularities are generally more prominent in
lower dimensions.70 In fact, the density of states can diverge in
2D (Fig. 6, for example) while only its derivative can diverge in
3D (Fig. 16, for example). As a result, in 2D, the angle-integrated
absorption enhancement factor indeed surpasses the Yablo-
novitch limit at van Hove singularities (Fig. 8), however, in 3D, a
similar absorption enhancement is much more difficult to
achieve, as we will show in Section 4.

The van Hove singularities in some sense redistribute the
optical properties of photonic crystals.73 For real materials,
redistribution of the density of states is constrained by the
density of states sum rule,74,75 which implies that the increase in
the density of states in one frequency region needs to be
compensated by the decrease in other frequency regions,
limiting the bandwidth and magnitude of the van Hove singu-
larities. In this photonic crystal, the theoretical bound exceeds
the conventional limit in the frequency range approximately
from 0.22c/a to 0.27c/a, due to the van Hove singularity in the
density of states. Assuming that the frequency range is centered
at a free space wavelength of 1000 nm, this frequency range
then corresponds to a wavelength range of 907 nm to 1114 nm.
This journal is © The Royal Society of Chemistry 2014
Therefore, it is possible to use van Hove singularities to achieve
a light trapping limit above the conventional limit over a
bandwidth that is relevant for solar cell light trapping at the
crystalline silicon bandedge. We may also stack multiple
photonic crystals to use multiple van Hove singularities for an
even broader bandwidth of light trapping absorption
enhancement.
3.4 Long wavelength limit

We observe that away from the van Hove singularities, the
absorption enhancement factor in a photonic crystal is in
general lower than the 2pn limit. This is partly due to the fact
that the overlap factor G is less than the area or volume fraction,
and, more importantly, due to the lower effective density of
states of the photonic crystal (Fig. 1) compared to the density of
states in the bulk structure (Fig. 3). In this subsection, we use
the effective medium theory,38 which is accurate in the long
wavelength limit, to provide a more in depth discussion of the
density of states.

In the long wavelength (low frequency) limit, the light does
not probe the ne details of the photonic crystal.76 At low
frequencies in Fig. 6, the density of states of the 2D photonic
crystal is linear with respect to frequency, which follows the
form of the density of states in a homogeneous dielectric
material in 2D. In the long wavelength limit, we can therefore
estimate the density of states of the photonic crystal treating it
as a homogeneous effective medium and using the effective
dielectric constant of such an effective medium. In general,
construction of a composite material from two constituents
with dielectric constants 31 and 32, and area or volume lling
fractions of f1 and f2, respectively, is considered. The effective
dielectric constant 3 of the composite is then bounded as
follows:77–80

(f131
�1 + f232

�1)�1 # 3 # f131 + f232 (13)

In 2D, imagine that we start with a bulk structure of
weakly absorbing material with 31 and area A, and compare the
structure to a photonic crystal structure for which we use
the same amount of absorbing material with 31 but dilute it
with a transparent material with 32 to a total area of A/h, where
h is the area fraction of the absorbing material. Then f1 ¼ h

and f2 ¼ 1 � h.
The bound of light trapping enhancement in 2D, as pointed

out in eqn (12), is related to the density of states r(u), as well as
the area fraction h and the overlap factor G. Since the overlap
factor G z h under the assumption that the electric eld is
distributed uniformly in space, the area fraction h and the
overlap factor G cancel out in eqn (12), and the bound of light
trapping enhancement is approximately proportional to r(u).
Furthermore, the 2D density of states is proportional to n2 or 3:

r2DðuÞ¼
43u

pc2
(14)

We further assume that all modes are accessible, which can
be made possible by methods discussed in Subsection 3.5.
Energy Environ. Sci., 2014, 7, 2725–2738 | 2731
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Fig. 9 Upper bounds of 2D angle-integrated absorption enhance-
ment factors by eqn (15). h is the area fraction of the absorber whose
index is n. (a) 32/31 ¼ 12. (b) 31/32 ¼ 12.
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Using eqn (13) and 14, the upper bound of the angle-integrated
light trapping enhancement factor F2D/2pn, where n ¼ ffiffiffiffi

31
p

, is
then given by

F2D

2pn
# hþ ð1� hÞ 32

31
(15)

In Fig. 9, we plot this upper bound in eqn (15) as a function
of the area fraction h of the absorbing material. In Fig. 9(a) we
consider the hypothetical case where the absorbing material
has a low dielectric constant 31, and is embedded in a trans-
parent background of a high dielectric constant with 32 ¼ 1231.
In this case, F2D/2pn signicantly exceeds unity, indicating that
such a structure has a light trapping potential that is signi-
cantly above conventional light trapping with the same
absorbing material forming a uniform bulk. This effect was
noted in ref. 4 and is due to the enhanced density of states from
the high index dielectric material at the background.

In Fig. 9(b), we consider the more typical case, where the
absorbing material has a high dielectric constant 31 ¼ 12, and is
embedded in a transparent background of a low dielectric
constant 32¼ 1. In this case, F2D/2pn is always less than unity. In
other words, in the long wavelength limit, such a structure will
always underperform, in terms of its light trapping capability,
as compared to a uniform bulk absorbing medium with the
same dielectric constant 31. The underperformance arises since
the presence of the low index material signicantly reduces the
density of states of the overall structure. The theoretical results
as illustrated in Fig. 9(b) are consistent with all numerical
results presented in this paper. In particular, while the theo-
retical results are derived using the effective medium theory
that strictly speaking is correct only in the long wavelength
limit, all our numerical results indicate that away from the van
Hove singularities, the photonic crystal structure that we
examine in this paper has absorption enhancement that
2732 | Energy Environ. Sci., 2014, 7, 2725–2738
signicantly underperforms the conventional limit for the cor-
responding uniform bulk medium. While the density of states
away from the long wavelength limit certainly cannot be esti-
mated from the effective medium theory, the overall trend, that
the use of a low index material should reduce the average
density of states, should in general be valid. This effect also
limits the bandwidth over which the use of van Hove singular-
ities can outperform the conventional limit, since it sets a lower
oor for the enhancement factor away from the van Hove
singularities.

Besides the considerations on light trapping, antireection
is also crucial for any practical solar cells.15,81 In particular,
optimal antireection is a prerequisite for optimal light trap-
ping.59 In the examples we show in Subsection 3.2, although the
density of states of the photonic crystal structure is lower than
that of the bulk structure due to “dilution” of the active mate-
rial, this dilution also lowers the effective refractive index of the
photonic crystal structure and provides better optical imped-
ance matching to the free space. This mechanism of antire-
ection adds another dimension to the optimization problem of
designing photonic crystal absorbers.
3.5 Mode coupling

Eqn (9) provides a tight upper limit for the angle-integrated
absorption enhancement factor F. The upper limit can be
reached if all the modes are in the over-coupling regime. Since
we have assumed that the single-pass absorption is weak, any
mode that can couple to the external radiation is over-coupled.
Therefore, to reach the upper limit one only needs to ensure
that all modes can couple to external radiation. This is evident
from Fig. 8, where the absorption enhancement is signicantly
lower than its limit given by eqn (9) in the rst band, and the
limit can be approximately reached for the second and higher
bands. As we noted above, if the modes in the rst band were
able to couple to external radiation, the 2pn light trapping limit
would be surpassed over a sizable bandwidth, approximately
from 0.22c/a to 0.27c/a in Fig. 8, at the lowest van Hove singu-
larity. Therefore, it is important to investigate possible methods
that would lead to complete accessibility of all the modes.

For the structure shown in Fig. 1, the mode coupling aspect
can be understood by considering the projected band diagram
shown in Fig. 5. Only modes above the light line, that is, modes
satisfying u$ ckx, can couple to external radiation. Since kx˛ [0,
p/ax], where ax¼ a in this case is the periodicity of the truncated
structure along the x direction, if follows that a signicant

number of modes below u ¼ 0:5
2pc
a

, which includes a great

portion of the rst band and a small portion of the second band,
cannot couple to external radiation and thus cannot contribute
to light trapping. This effect is seen in Fig. 8, where in the
frequency range of the rst band, the numerically determined
enhancement factor falls far below the theoretical bound of eqn
(5), whereas the numerically determined enhancement factor
agrees quite well with the theoretical bound in the upper bands.

For a bulk structure, efficient coupling can be achieved when
the light rays are randomized by surface roughness, or when the
This journal is © The Royal Society of Chemistry 2014
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Fig. 10 A different truncation of the 2D photonic crystal in Fig. 1. The
structure is rotated by 26.565� from the original structure in Fig. 1. The
effective periodicity is

ffiffiffi
5

p
a, where a is the lattice constant of the square

lattice.

Fig. 11 Comparison of angle-integrated absorption enhancement
spectra for the photonic crystals in Fig. 1 and 10.

Fig. 12 The photonic crystal in Fig. 1 with one additional scattering
layer on top. The dielectric rods in the first layer on top are transparent
while the other rods are weakly absorptive. The real part of the
dielectric constant is 12. The radius of each absorptive rod is 0.2a,
where a is the lattice constant. The radii of the transparent rods are
alternating in every five rods, being 0.2a, 0.18a, 0.22a, 0.16a, and 0.24a,
thus forming a scattering layer.

Fig. 13 Comparison of angle-integrated absorption enhancement
spectra for the photonic crystals in Fig. 1 and 12.
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light is scattered by a grating structure in which the periodicity
is much larger than the wavelength of light.5,6,82 The same
underlying physics applies to photonic crystals in the wave-
optic regime. In the following, we will explicitly demonstrate
two simple methods to achieve complete coupling. Both
methods seek to increase the spatial periodicity ax of the trun-
cated photonic crystal along the x direction.

In the rst method, we simply choose a different crystal
truncation. As an example, in Fig. 10 we choose the orientation of
the crystal such that the periodicity along the surface ax ¼

ffiffiffi
5

p
a.

In this case, one can show that all the modes in the crystal are
above the light line. In the simulation results shown in Fig. 11, we
indeed observe signicant improvement of light trapping
enhancement in the rst band, as compared to the structure in
Fig. 1. Also, the light trapping enhancement in the upper bands
remains essentially unchanged as we vary the crystal orientation,
as expected from the mode coupling argument.

In the second method, we add a layer of grating on top of the
original structure. In Fig. 12, we reuse the structure from Fig. 1,
but adding a top layer of transparent rods to keep deff
unchanged. We vary the radii of the ve transparent rods in that
top layer, therefore creating random scattering of incoming
light. Such a layer effectively increases the periodicity to 5a. In
Fig. 13, we compare the light trapping enhancement without
This journal is © The Royal Society of Chemistry 2014
and with the random layer. Again, the second and higher bands
are nearly identical, but, with the scattering, the absorption in
the rst band is vastly improved up to the theoretical bound
given in eqn (12).

With either method, we are able to achieve nearly complete
coupling of all the modes. Near the frequency range of the rst
van Hove singularity, roughly between 0.2c/a and 0.3c/a, the
calculated light trapping absorption enhancement surpasses
the conventional 2pn limit.
4 Brief discussion of light trapping in
3D photonic crystals

The formalism that we have developed for 2D systems can be
readily extended to 3D. For example, in 3D, using eqn (9), the
angle-integrated light trapping enhancement factor is

F3D ¼
ðp=2
0

dq

ð2p
0

d4f ðq;4Þcosqsinq

¼ 1

k0
2

ðð
kx

2 þ ky
2 # k0

2
dkxdkyf

�
kx; ky

� (16)
Energy Environ. Sci., 2014, 7, 2725–2738 | 2733
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Fig. 15 3D photonic crystal. The woodpile structure consists of four
alternating layers. Each layer has a thickness of 0.25a and consists of a
1D array of infinitely long square rods with widths of 0.25a, where a is
the lattice constant. The horizontal locations of the first and the
second layers are shifted laterally by 0.5a from the horizontal locations
of the third and the fourth layers. The lattice orientations of the first
and the third layers are orthogonal to the lattice orientations of the
second and the fourth layers.

Fig. 16 Comparison of the angle-integrated absorption enhancement
factor and its theoretical bound calculated by eqn (18) for the 3D
woodpile structure in Fig. 15. The angle-integrated limit 4pn2 ¼ 150.
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¼ Dk2

k0
2

X
n

fn (17)

where q is the incidence angle, and 4 is the azimuthal angle,
and

kx ¼ k0 sin q cos 4

ky ¼ k0 sin q sin 4

k0 ¼ u

c

Dk ¼ 2p

L

Similar to eqn (12), we have,

F3D #
ð2pcÞ3G
nhu2

r3DðuÞ (18)

where r3D(u) is the density of states per unit volume.
Here, we highlight several notable differences between the

3D and 2D photonic crystals. In 3D, one can show that in the
long wavelength limit, for a high index absorbing material
embedded in a low index transparent background, the same
index contrast and volume fraction would cause greater density
of states reduction than in 2D. The result of the effective
medium theory for this case gives

F3D

4pn2
#

�
hþ ð1� hÞ 32

31

�3
2

(19)

as plotted in Fig. 14(b) with 31 ¼ 12 and 32 ¼ 1. As a result, the
absorption enhancement is signicantly lower than the
Fig. 14 Upper bounds of 3D angle-integrated absorption enhance-
ment factors by eqn (19). h is the area fraction of the absorber whose
index is n. (a) 32/31 ¼ 12. (b) 31/32 ¼ 12.

2734 | Energy Environ. Sci., 2014, 7, 2725–2738
conventional limit of 4pn2 (Table 1). In addition, the van Hove
singularities aremuch less prominent since the density of states
at van Hove singularities is not divergent (although its deriva-
tive is divergent). Therefore, the angle-integrated light trapping
enhancement factor does not exceed 4pn2, although at indi-
vidual angles and wavelengths the 4n2 limit can be surpassed.

We study a 3D woodpile structure,83,84 consisting of the
same dielectric with 3 ¼ 12 stacked in air as in the 2D simu-
lations, as shown in Fig. 15. We obtain r3D(u) by MPB for an
innite and lossless structure, and F3D by S4 for the corre-
sponding nite and lossy structure. We plot the right hand
side expression (2pc)3r3D(u)/nu

2 in eqn (18) as the “Theoret-
ical Bound” curve in Fig. 16, assuming that the overlap factor G
is equal to the volume fraction h. We plot F3D as the
“Absorption Calculation” curve in Fig. 16. The absorption
enhancement follows the density of states in the same manner
as in the 2D case. We observe that both the theoretical bound
and the actual angle-integrated absorption enhancement
factor fall signicantly below the conventional limit of 4pn2 ¼
150 in this case.
This journal is © The Royal Society of Chemistry 2014
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5 Conclusion

In this paper, we consider light trapping in photonic crystals,
where the photonic crystals themselves operate as inhomoge-
neous absorbing media. We show that the density of states of
photonic crystals strongly inuences the light trapping behav-
iors. We also note the importance of modal overlap and the
need for efficient mode coupling.

Our numerical results show that, in 2D, with the use of van
Hove singularity in the density of states, the angle-integrated
light trapping absorption enhancement factor can exceed the
conventional limit over a substantial bandwidth. In 3D, it is
more difficult to use photonic crystals to overcome the
conventional limit, due to the weakening of the van Hove
singularity and the fact that embedding a high index absorbing
material in a low index background reduces the overall density
of states away from van Hove singularities. These results
provide a theoretical guidance for the design of optical
absorbers that are inhomogeneous in general, including
nanostructured photovoltaic and photoelectrochemical cells.
We show that to design and experimentally realize high-effi-
ciency photonic crystal solar cells, one should include the
considerations on the effective medium, van Hove singularities,
overlap factor, mode coupling, and antireection. Photonic
crystals can be and have been fabricated using a variety of
techniques.44,47,48,55,85–93
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