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We observe from simulations that a doubly resonant structure can exhibit spectral behavior analogous to

electromagnetically induced transparency, as well as superscattering, depending on the excitation. We

develop a coupled-mode theory that explains this behavior in terms of the orthogonality of the radiation

patterns of the eigenmodes. These results provide insight in the general electromagnetic properties of

photonic nanostructures and metamaterials.
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The concept of a cross section is very commonly used to
describe how large an object appears to incident external
radiation [1]. The deviation of the electromagnetic cross
section with respect to the geometrical cross section is well
documented for nanoscale objects. In cloaking, for ex-
ample, the electromagnetic cross section is made much
smaller than the geometrical cross section of the object
[2–4]. For subwavelength objects exhibiting a single reso-
nance, on the other hand, the electromagnetic cross section
can be much larger than the geometrical cross section [5].
Such a resonance effect is important for applications such
as in the design of electrically small antennas to allow for
good transmission or reception. An important question to
pose further would be: How does the electromagnetic cross
section behave for an object that supports multiple
resonances?

The question we pose above is, in fact, of essential
importance in understanding a wide variety of effects that
are of current interest in nanophotonics [6–10]. For ex-
ample, it is known that having two resonances may lead to
interference, in which case the spectral behavior is an
optical analogue of electromagnetically induced transpar-
ency (EIT) [11–18]. For isolated objects then, this may
result in a suppression of the electromagnetic cross section.
On the other hand, the effect of superscattering, which also
uses at least two resonances, was also recently noted. In
this case, the scattering cross section is significantly en-
hanced due to the simultaneous presence of both reso-
nances [19,20]. A formalism that elucidates the
occurrence of both behaviors has never been proposed
before.

In this Letter, as a model system of an isolated object
that exhibits two resonances, we study a system consisting
of two slits in a metal film and study the transmission cross
section of this system for light incident on one side of the
film. The transmission cross section is defined as the total
transmitted power over the intensity of an incident plane
wave. It is known that each slit can support a localized
resonance, and hence the transmission cross section of the
individual slit has a well-known Lorentzian line shape

[21,22]. The two-slit system therefore supports two
resonances. For this system, our simulations reveal that it
can exhibit both EIT and superscattering behavior, depend-
ing on the excitation. We develop a coupled-mode theory
that explains this effect. The theory identifies a superra-
diant and a subradiant mode in this system [7–9,14] and,
moreover, indicates the importance of the degree of
orthogonality of the radiation patterns of the subradiant
and superradiant eigenmodes in explaining the transmis-
sion behavior. In particular, we demonstrate that the perfect
EIT analogue shows up as an extreme case where the
radiation patterns of the eigenmodes are identical, up to a
constant phase factor. Enhancement of the transmission
cross section (i.e., superscattering), on the other hand,
becomes more likely when the radiation patterns are
less correlated and, moreover, is guaranteed when the
radiation patterns of the eigenmodes are orthogonal and
when one uses an excitation that significantly excites both
resonances.
As a starting point, we simulate the transmission cross

section spectrum �Tð!Þ, of a double-slit structure in a
perfect electric conductor film of thickness t [Fig. 1]. The
slit widths are deep-subwavelength (t=10 � �), so that the
individual slits are, to a good approximation, isotropic
radiators [22]. The slits are spaced 0:6t (center to center)
and are filled with materials with a slightly different per-
mittivity (40 and 40.16), which allows us to independently
tune the resonant frequencies of the slits. We obtain �Tð!Þ
from finite-difference frequency-domain simulations [23]
[red dots in Fig. 1], for an incoming transverse magnetic
plane wave (magnetic field vector pointing out of the
plane). The spectral behavior is characterized by two reso-
nances: a broad one and a narrow one. It also strongly
depends on the excitation: For normal incidence and 20�
off-normal incidence, the narrow resonance interferes
destructively with the broad resonance, and�Tð!Þ exhibits
an EIT line shape [Figs. 1(a) and 1(b)]; for 40� and 60�
off-normal incidence, the contributions from the reso-
nances add up and a peak is observed (superscattering)
[Figs. 1(c) and 1(d)]. The position of the sharp resonance
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with respect to the narrow resonance remains approxi-
mately unchanged as the angle of incidence is varied.

In order to explain this behavior, we develop a coupled-
mode theory. In this coupled-mode theory, the slits are
described as resonances, with amplitudes a ¼ ½a1 a2�T .
These resonances interact with free space on both sides
of the film. The free space is characterized in terms of
plane wave channels, for which the amplitudes of incoming
and outgoing waves are denoted sþ and s�, respectively.
We distinguish between plane wave channels that are
above (subscript T) or below (subscript B) the film. To
facilitate the description of these plane wave channels, we
impose a periodic boundary condition with period L and
label the channels with respect to the parallel wave vector
components of 2�n=L, with n being integers [22,24]. For
propagating modes, the index n takes on integer values
from �N to N, with N ¼ bL�c, where � is the wavelength.

An index n corresponds to a channel with angle �n ¼
arcsinðnNÞ with the normal. In the end of the calculation,

we will take the limit L ! 1 to recover the case of an
isolated object interacting with a continuum of plane wave
channels. Once the resonances and channels are defined,
the coupled-mode equations can be written as [25–27]

da

dt
¼ ði�� �Þaþ KTsT;þ; sB;� ¼ Ka: (1)

The matrix

� ¼ !1 !12

!12 !2

� �

contains the resonant frequencies!1 and !2 and the direct
coupling term !12;

� ¼ KþK ¼ �1
ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
xffiffiffiffiffiffiffiffiffiffiffi

�1�2
p

x �2

� �

contains the amplitude leakage rates �1 and �2 of the
resonators. The form of these equations is dictated by
energy conservation and time-reversal symmetry [26].
The off-diagonal elements of � describe the indirect cou-
pling between the resonances, as induced by the interaction
between each resonance and free space. These elements
depend on x, defined as

x ¼ lim
N!1

1

N�

XN
n¼�N

ei�n

cos�n
¼ 1

�

Z �=2

��=2
ei�d� ¼ J0

�
2�

�
d

�
;

(2)

with �ðnÞ ¼ 2�
� d sin�ðnÞ [Fig. 2(a)]. x characterizes the

overlap between the radiation patterns of the individual
resonators, here assumed isotropic. For d ¼ 0, x ¼ 1, de-
scribing the hypothetical case where the two slits are right
on top of each other, and hence their radiation patterns are
identical. As d increases, x oscillates towards zero,
following a zeroth order Bessel function of the first kind
J0 [Fig. 2(b)].
The coupling constants to the individual channels, in

matrix form, are

KT ¼ k�N;1 . . . k0;1 . . . kN;1

k�N;2 . . . k0;2 . . . kN;2

� �

¼ 1ffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffi
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cos��N

q
. . .
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p
. . .

ffiffiffiffiffiffiffiffiffi
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cos�N

q
ffiffiffiffiffiffiffiffiffiffiffi

�2

cos��N

q
ei��N . . .

ffiffiffiffiffiffi
�2

p
. . .

ffiffiffiffiffiffiffiffiffi
�2

cos�N

q
ei�N

2
64

3
75:
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FIG. 1 (color online). Doubly resonant structures can exhibit
behavior that is (a),(b) a classical analogue of EIT, as well as
(c),(d) akin to superscattering in their transmission cross section
spectra, depending on the excitation. Theory (blue line) matches
finite-difference frequency-domain simulations (red dots). The
insets show the simulated double-slit structure with broken
symmetry (permittivities of materials in the slits are 40 and
40.16) and the incident plane wave. The dashed lines correspond
to the Lorentzian transmission cross section spectra of the
individual slits.
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FIG. 2 (color online). (a) Two deep-subwavelength slits
spaced a distance d couple to an outgoing plane wave (under
an angle � with the normal) with phase difference �. The slits
are assumed to be isotropic radiators. (b) Overlap between the
radiation patterns of the individual radiators.
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Assuming a plane wave excitation in the top half space,
under normal incidence,

sT;þ ¼ ½ 0 . . . 0 1 0 . . . 0 �T: (4)

Similarly, for a plane wave under an angle �n, all channels
have zero amplitude, except for channel n. The amplitudes
of the channels in the bottom half space are given by
the vector sB;�. The transmission cross section is then

defined as

�Tð!; �nÞ ¼
sþB;�sB;�

jsT;nþj2=ðL cos�nÞ
; (5)

with

sB;� ¼ K½ið!I��Þ þ ���1KTsT;þ; (6)

which leads to [28]

�Tð!; �nÞ ¼ 2�

�

�
�!12ðcos�n þ xÞð ffiffiffiffiffiffi

�1

p
�3=2
2 !1 þ �3=2

1

ffiffiffiffiffiffi
�2

p
!2 � �3=2

1

ffiffiffiffiffiffi
�2

p
!� ffiffiffiffiffiffi

�1

p
�3=2
2 !Þ

þ ðx cos�n � 1Þð�2
1�

2
2 � �2

1�
2
2x

2Þ � �1�2x cos�nð!2
12 þ!2 þ!1!2 �!!2 �!!1Þ � �1�2!

2
12

þ �2
1!!2 þ �2

2!!1 � �2
2ð!2

1 þ!2Þ þ �2
1ð!2

2 þ!2Þ
2

�
=f½2 ffiffiffiffiffiffiffiffiffiffiffi
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p
x!12 þ ð�1 þ �2Þ!� �2!1 � �1!2�2

þ ð��1�2x
2 þ �1�2 þ!2

12 �!2 þ!!1 þ!!2 �!1!2Þ2g: (7)

This equation matches the simulations excellently [blue
lines in Fig. 1]. The resonant frequency !1 and !2 and
(amplitude) leakage rates �1 and �2 were found from first-
principles electromagnetic simulations of the single slits
[dashed lines in Fig. 1(a)]. We note that the broad (narrow)
resonance is wider (sharper) than either one of the individ-
ual resonances, indicating that the superradiant and sub-
radiant eigenresonances of the system resulted from the
coupling of the individual resonances. The direct coupling
term !12 is easily fitted, since it corresponds to about half
the difference in position of the broad and narrow peaks.
We can therefore use a single simulation to extract this
parameter, which in turn allows us to analytically calculate
the spectral response for any angle of incidence.
Alternatively, this coupling constant can be calculated
analytically in principle [25]. In the structure simulated
here, the direct coupling term is small, and the broad and
narrow resonances are closely aligned. For stronger direct
coupling, the resonances become less aligned and the line
shape becomes more Fano-like.

To gain more insight, we now develop an approximate
theory that identifies the subradiant and superradiant eigen-
modes. For this theory, we can assume that �1 ¼ �2 ¼ �,
because similar slits have approximately the same leakage
rates. Furthermore, we assume that the spatial separation is
small compared to the wavelength. In that case, x does not
strongly depend on the choice of wavelength �, so that we
can pick x ¼ xð�0Þ for a wavelength �0 in the range of
interest.

Under these assumptions, we can find the eigenmodes,
labeled a and b, of the matrix j�� �:

va;b�
� �!12iþ�x
!1�!2

2 i� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð!1�!2Þ2þð2!12i�2�xÞ2p 1

�

(8)

as well as the corresponding eigenvalues i!a;b � �a;b,

where

�a;b ¼ �Re

�
!1 þ!2

2
i� �� 1

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð!1 �!2Þ2 þ ð2!12i� 2�xÞ2

q �
;

!a;b ¼ Im

�
!1 þ!2

2
i� �� 1

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð!1 �!2Þ2 þ ð2!12i� 2�xÞ2

q �
: (9)

These eigenmodes have the same resonant frequency,
when !12 ¼ 0. Eigenmode a is superradiant; eigenmode
b is subradiant. The (complex) radiation patterns of the
eigenmodes are calculated by using the elements of the
eigenvectors va and vb:

Cað�Þ ¼ va;1 þ va;2e
i�;

Cbð�Þ ¼ vb;1 þ vb;2e
i�: (10)

These radiation patterns satisfy the normalization rela-

tion 1
�

R�=2
��=2C

	
að�ÞCað�Þd�¼ 1

�

R�=2
��=2C

	
bð�ÞCbð�Þd�¼1.

jCað�Þj2 and jCbð�Þj2 are therefore directivities of the
radiation patterns of the eigenmodes.
We define the radiation overlap:

h ¼ 1

�

Z �=2

��=2
C0	
b ð�ÞC0

að�Þd�: (11)

with

C0
að�Þ¼va;1�va;2e

i�; C0
bð�Þ¼vb;1�vb;2e

i�: (12)

The phase of h corresponds to a weighed radiation phase
difference between the superradiant and subradiant eigen-
modes. With these definitions, for a plane wave coming in
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under an angle �exc, the transmission cross section can be
written in a much more compact form as

�Tð!;�excÞ
p�

�

� jCað�excÞj2�2
a

ð!�!aÞ2þ�2
a

þ jCbð�excÞj2�2
b

ð!�!bÞ2þ�2
b

�2Re

�
C	
að�excÞCbð�excÞh�a�b

ð�ið!�!aÞþ�aÞðið!�!bÞþ�bÞ
��

(13)

with prefactor p ¼ �2

�a�bjva;1vb;2�vb;1va;2j2 . Under the

stated assumptions, the result of the approximate theory
[Eq. (13)] is in close agreement with Eq. (7) [28].

In Eq. (13), the two Lorentzians describe the contribu-
tions of the individual eigenmodes, and the cross term
describes their interference. At ! ¼ !a ¼ !b (assuming
!12 ¼ 0), the spectrum will show a dip (EIT) when
�a � �b and

jCað�excÞj2 þ jCbð�excÞj2 � 2Re½C	
að�excÞCbð�excÞh�

< jCað�excÞj2
, jCbð�excÞj2 � 2Re½C	

að�excÞCbð�excÞh�< 0; (14)

and a peak (superscattering) when

jCbð�excÞj2 � 2Re½C	
að�excÞCbð�excÞh�> 0: (15)

From Eq. (14), we see that EIT is more likely for larger
overlap between the radiation patterns of the eigenmodes,
i.e., values of jhj close to 1. Strong interference between
the two resonant pathways can be accomplished only when
the radiation patterns of the subradiant and superradiant
modes are similar to each other. We also note the impor-
tance of the phase difference between the eigenmodes upon
excitation [the phase of C	

að�excÞCbð�excÞ] and the weighed
phase difference in radiation (the phase of h). To achieve a
prominent EIT behavior, one has to achieve destructive
interference; thus, these phases need to cancel each other
out. Perfect EIT occurs when the radiation patterns of the
eigenmodes are identical, up to a constant phase factor:
Cað�Þ � Cbð�Þ and jhj ¼ 1. The transmission cross section
is then

�Tð!; �excÞ 
 p�

�
jCað�excÞj2

��������
�a

ið!�!aÞ þ �a

� �b

ið!�!bÞ þ �b

��������
2

; (16)

so that the transmission cross section drops to exactly zero
at ! ¼ !a ¼ !b. Figure 3(a) illustrates this case, with the
following parameters: !a ¼ !b ¼ 1, �a ¼ 0:39, �b ¼
0:01, jCað�Þj ¼ jCbð�Þj ¼ 1, and p ¼ 1.

Another extreme, the case of omnidirectional superscat-
tering, can be achieved in structures such as nanorods and
nanospheres with a plasmonic-dielectric-plasmonic
layer structure [19,20], where the radiation patterns of
the subradiant and superradiant eigenmodes are exactly

orthogonal, so that h ¼ 0. Equation (15) is then guaranteed
to be satisfied, when the subradiant eigenmode is excited.
The transmission cross section is then nothing more
than the sum of the Lorentzians associated with the indi-
vidual eigenmodes. For a structure that supports two such
eigenmodes, we find

�Tð!; �excÞ 
 p�

�

� jCað�excÞj2�2
a

ð!�!aÞ2 þ �2
a

þ jCbð�excÞj2�2
b

ð!�!bÞ2 þ �2
b

�
:

(17)

This case is illustrated in Fig. 3(b), with the same
parameters as before, except that now h ¼ 0. Note that
under the assumption that jCað�Þj ¼ jCbð�Þj ¼ 1, the ra-
diation patterns can still be orthogonal leading to h ¼ 0,
given that the (complex) radiation patterns have the right
phase relation.
The two-slit case that we have considered in Fig. 1

corresponds to the intermediate case, where there is a
partial overlap between the radiation patterns of the eigen-
modes. For the two slits in Fig. 1, jhj is about 0.7, signifi-
cantly smaller than 1 and larger than 0. In such a case,
depending on �exc, either Eq. (14) or Eq. (15) can be
satisfied, so that we can switch from EIT to superscatter-
ing. For normal incidence and 20� off-normal incidence,
Eq. (14) is satisfied. We observe weakened EIT behavior:
The transmission cross section shows a dip, but not to
zero, because the radiation patterns cannot perfectly
destructively interfere, for only partial radiation overlap
[Figs. 1(a) and 1(b)]. Superscattering behavior, i.e., the
existence of a subradiant peak on top of a superradiant
background, occurs for the two-slit case for sufficiently
large off-normal angles of incidence [Figs. 1(c) and 1(d)].
The subradiant and superradiant eigenmodes are then
excited with an amplitude and phase relation that causes
Eq. (15) to be satisfied. We have thus provided a theory that
accounts for the simultaneous presence of EIT and
superscattering for the structure shown in Fig. 1.
In conclusion, we developed a coupled-mode theory that

predicts and explains EIT analogues in addition to super-
scattering in doubly resonant structures in terms of the
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FIG. 3 (color online). Transmission cross section spectra for
(a) perfect omnidirectional EIT and (b) omnidirectional
superscattering.
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overlap between the radiation pattern of subradiant and
superradiant eigenmodes. This theory provides insights in
the general spectral behavior for metamaterials, as well as
optical antennas [29,30] and nanoparticles [31,32].
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