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1. Introduction
Light-guiding structures which allow subwavelength
confinement of the optical mode are important for
achieving compact integrated photonic devices[1−7]. The
minimum confinement of a guided optical mode in di-
electric waveguides is set by the diffraction limit and
is of the order of λ0/n, where λ0 is the wavelength in
free space and n is the refractive index. As opposed to
dielectric waveguides, plasmonic waveguides have shown
the potential to guide subwavelength optical modes, the
so-called surface plasmon polaritons, at metal-dielectric
interfaces.

Several different plasmonic waveguiding structures
have been proposed, such as metallic nanowires[2,3] and
metallic nanoparticle arrays[4,5]. Most of these struc-
tures support a highly-confined mode only near the
surface plasmon frequency. In this regime, the optical
mode typically has low group velocity and short propa-
gation length. It has been shown however that a metal-
dielectric-metal (MDM) structure with a dielectric region
thickness of ∼100 nm supports a propagating mode with
a nanoscale modal size at a wavelength range extend-
ing from zero-frequency (DC) to visible[8]. Thus, such a
waveguide could be potentially important in providing
an interface between conventional optics and subwave-
length electronic and optoelectronic devices. Because
of the predicted attractive properties of MDM waveg-
uides, their modal structure has been studied in great
detail[8−12], and people have also started to explore such
structures experimentally[13−15]. Recent research work
has therefore focused on the development of functional
plasmonic devices, including active devices, for nanoscale
plasmonic integrated circuits.

Here we provide a review of some of our own recent re-
search activities aiming to advance the state of the art of
plasmonics through the introduction of novel MDM plas-

monic waveguide devices for manipulating light at the
nanoscale[16−19]. We first briefly review the simulation
method used in our studies, then introduce bends, split-
ters, and mode converters for MDM waveguides with no
additional loss. We also demonstrate that optical gain
provides a mechanism for on/off switching in MDM
plasmonic waveguides. Finally, we introduce highly
efficient compact couplers between dielectric waveguides
and MDM waveguides.

2. Simulation method
We study the properties of MDM plasmonic waveguide

devices using a two-dimensional (2D) finite-difference
frequency-domain (FDFD) method[20,21]. This method
allows us to directly use experimental data for the
frequency-dependent dielectric constant of metals such
as silver[22], including both the real and imaginary parts,
with no further approximation. Perfectly matched layer
(PML) absorbing boundary conditions are used at all
boundaries of the simulation domain[23].

Due to the rapid field variation at the metal-dielectric
interfaces, a very fine grid resolution of ∼1 nm is re-
quired at the metal-dielectric interfaces to adequately
resolve the local fields. On the other hand, a grid res-
olution of ∼ λ/20 is sufficient in other regions of the
simulation domain. For example, the required grid size
in air at λ0 = 1.55 µm is ∼77.5 nm, which is almost
two orders of magnitude larger than the required grid
size at the metal-dielectric interfaces. We therefore use a
nonuniform orthogonal grid[24] to avoid an unnecessary
computational cost. We found that by using such a grid
our results are accurate to ∼0.05%.

3. Bends and splitters
In this section, we investigate the performance of

bends and power splitters in MDM plasmonic waveg-
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uides. Waveguide bends and splitters are basic struc-
tures for optical interconnects and therefore essential
components of optical integrated circuits[6,25]. Here, the
relevant question is whether MDM bends and splitters
will induce reflection or excess absorption loss on top of
the propagation loss in the waveguides.

To answer this question, we calculate the transmis-
sion coefficient of bends and splitters and normalize it
with respect to the transmission coefficient of a straight
waveguide with the same length. In all cases, the waveg-
uide width d is much smaller than the wavelength so
that only the fundamental TM waveguide mode (with
magnetic field perpendicular to the direction of propaga-
tion) is excited. In Fig. 1, we show the calculated power
transmission coefficient of a 90◦ sharp MDM waveguide
bend (inset of Fig. 1) as a function of wavelength. We
observe that there is no bending loss in a broad wave-
length range that extends from DC to near-infrared. This
range includes the optical communication wavelength of
1.55 µm.

To explain the absence of bending loss in subwave-
length MDM bends, we introduce an effective char-
acteristic impedance model based upon the dispersion
relation of the MDM waveguide structures. The char-
acteristic impedance of the fundamental TEM mode in
a perfect electric conductor (PEC) parallel-plate waveg-
uide is uniquely defined as the ratio of voltage V to
surface current density I and is equal to[26]

ZTEM ≡
V

I
=

Exd

Hy

=
βTEM

ωǫ0
d =

√

µ0

ǫ0
d, (1)

where Ex, Hy are the transverse components of the elec-
tric and magnetic fields, respectively, and we assumed a
unit-length waveguide in the y direction. For non-TEM
modes, such as the fundamental MDM mode, voltage
and current are not uniquely defined. However, metals
like silver satisfy the condition |ǫmetal| ≫ ǫdiel at the op-
tical communication wavelength of 1.55 µm[22]. Thus,
|Ex metal| ≪ |Ex diel| , so that the integral of the electric
field in the transverse direction can be approximated by
Ex dield and we may therefore define the characteristic
impedance of the fundamental MDM mode as

ZMDM(d) ≡
Ex diel d

Hy diel
=

βMDM(d)

ωǫ0
d, (2)

where βMDM(d) = 2π/λg(d) is the real part of the mode

propagation constant[26], and λg is the guide wavelength

Fig. 1. Power transmission spectra of a MDM waveguide bend
(shown in the inset) calculated using FDFD.

of the fundamental TM mode in the MDM waveguide,
which is smaller than the free-space wavelength λ0

[8].
In the case of a MDM bend, if the structure dimensions

are small in comparison with the wavelength, the qua-
sistatic approximation holds[26]. Under the quasistatic
approximation, the bend is equivalent to a junction be-
tween two transmission lines with the same character-
istic impedance, and there is therefore no bending loss.
The limiting wavelength λc at which the transmission
coefficient decreases below 99% is 1.27 µm (0.76 µm) for
d = 100 nm (d = 50 nm) (Fig. 1). The operating wave-
length range widens as d decreases, because for thinner
structures the quasistatic approximation holds over a
wider range of wavelengths.

We also calculate the transmission spectra of MDM
splitters (inset of Fig. 2). The frequency response
of MDM splitters is quite similar to the response of
MDM bends. At long wavelengths the transmission is
equal to 44.4% for din = dout. Under the quasistatic
approximation, which holds at long wavelengths, the
splitter is equivalent to a junction of three transmis-
sion lines with the same characteristic impedance Z0.
The load connected to the input transmission line at
the junction consists of the series combination of the
two output transmission lines. Thus, the equivalent load
impedance is ZL = 2Z0 and the reflection coefficient is
R̄ = |(ZL − Z0)/(ZL + Z0)|

2
= 1/9. Because of the sym-

metry of the structure, the transmitted optical power
is equally distributed between the two output waveg-
uide branches, so that the transmission coefficient is
T = 4/9 = 44.4%.

Based on the above discussion, in order to improve
the transmission coefficient of the MDM splitter, we can
adjust the characteristic impedance of the input waveg-
uide Zin so that Zin ≃ ZL = 2Z0. The input impedance
Zin can be adjusted by varying the thickness din of the
input waveguide. In Fig. 2, we show the calculated
reflection coefficient R of the MDM T-shaped splitter
at λ0 = 1.55 µm as a function of din/dout, for dout =
50 nm (inset of Fig. 2). We note that at λ0 =
1.55 µm the propagation length of the fundamental
MDM mode is much larger than the splitter dimen-
sions so that the contribution of excess absorption to
the splitter loss is negligible. We observe that the

Fig. 2. Reflection coefficient R of a MDM T-shaped split-
ter (shown in the inset) as a function of din/dout at λ0 =
1.55 µm calculated using FDFD. We also show with dashed
line the reflection coefficient R̄ calculated based on the char-
acteristic impedance ZMDM and transmission-line theory. Re-
sults are shown for dout = 50 nm.
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reflection coefficient is below 1% for 1.8 < din/dout < 2.8
and is minimized for din/dout ≃ 2.25. In Fig. 2, we
also show the reflection coefficient of the MDM T-shaped
splitter calculated based on ZMDM as

R̄ =

∣

∣

∣

∣

ZL − Z0

ZL + Z0

∣

∣

∣

∣

2

=

∣

∣

∣

∣

2ZMDM(dout) − ZMDM(din)

2ZMDM(dout) + ZMDM(din)

∣

∣

∣

∣

2

. (3)

We observe that there is a very good agreement between
R̄ and the exact reflection coefficient R calculated us-
ing FDFD. This agreement suggests that the concept of
characteristic impedance for MDM waveguides is indeed
valid and useful. The deviation between R̄ and R at
large values of din/dout is due to the fact that din is not
very small compared with the wavelength and the qua-
sistatic approximation therefore breaks down. Similar
deviations are observed for PEC parallel-plate waveg-
uides. Such deviations decrease at longer wavelengths in
both the PEC and MDM waveguide cases.

4. Mode converters
In this section, we investigate the performance of mode

converters which couple efficiently the modes of two
MDM plasmonic waveguides with different widths. Mode
converters can act as impedance matching circuits max-
imizing the coupling between plasmonic waveguides and
optoelectronic devices, and will therefore be essential
components of plasmonic integrated circuits.

Here we design a mode converter to couple the mode
of a wavelength-sized MDM waveguide to that of a sub-
wavelength one. Since the quasistatic approximation
does not hold for wavelength-sized components, we use a
more general scattering matrix formalism instead of the
characteristic impedance model.

We first consider the junction between two MDM plas-
monic waveguides with different widths which both sup-
port a single propagating mode. In such a case, far away
from the waveguide junction the fields can be written
in terms of this fundamental mode of the system, since
all higher order modes will have an exponential decay
much faster compared with the main propagating mode.
Under such circumstances, the effects of the waveguide
junction on the propagating modes can be described us-
ing the single mode scattering matrix (S) formalism[27].
The scattering matrix relates the transverse magnetic
field of the modes that arrive at the left and right ports,
H+

L , H+
R to the transverse magnetic field of the modes

that propagate away from the ports, H−
L and H−

R :

(

H−
L

H−
R

)

=

(

S11 S12

S21 S22

) (

H+
L

H+
R

)

. (4)

Here, we design a mode converter consisting of a cas-
cade connection of two junctions (inset of Fig. 3(b)) to
minimize the reflection at a specific frequency. Such a
structure can be modeled as two junctions with scatter-
ing matrices, LS and RS, separated by a center waveguide
of length l as shown in Fig. 3(a). When different scatter-
ing matrices are cascaded, the transfer matrix, T, leads
to a much simpler formulation[28]

(

H+
L

H−
L

)

=

(

T11 T12

T21 T22

) (

H−
R

H+
R

)

. (5)

In order to have zero reflection (H−
L = 0), one should

have T21H
−
R + T22H

+
R = 0, which can be cast in terms of

the scattering parameters as

S11H
−
R = (S11S22 − S12S21)H

+
R . (6)

If the mode that propagates toward the right junction
has unit strength at its input plane, we have H−

C = eikCl

and H+
C = RS11e

−ikCl, where kC is the wave vector of the
center waveguide. With these definitions, the condition
for zero reflection, Eq. (6), for the left junction can be
written as

e−2ikCl =
LS11/

RS11

LS11
LS22 − LS2

21

, (7)

where we also use the fact that for reciprocal media
S12 = S21.

If the system were lossless, then the scattering matrix
would be unitary (SS† = 1), which implies the following
conditions:

|S11|
2 = |S22|

2 = 1 − |S12|
2,

S12

S∗
21

= −
S22

S∗
11

.
(8)

Using (7) and (8), the zero reflection condition becomes

|LS22| = |RS11|, (9)

∡
LS22 + ∡

RS11 = 2kCl + 2πn, (10)

where n is any integer value. This means that to match
a left waveguide to a right waveguide, one should choose
a center waveguide width which satisfies Eq. (9), and
decide on the length of the center waveguide based on
Eq. (10). Once a matching left, center and right waveg-
uide triplet is found, the procedure can be recursively
repeated to cascade more junctions without getting any
reflection at the leftmost waveguide.

We can use the conditions (7), (9), and (10) for zero
reflection, to design the mode converter. Condition (7)
is more general and applicable to the lossy case. We
extracted S for the lossless metal case. The results were
very similar to the case where the loss was included.
That led us to suspect that the conditions for the lossless
reciprocal junctions, (9) and (10), would be essentially
sufficient in the design of a mode converter that con-
verts the mode of a wavelength-sized MDM waveguide
(d = 0.9λ0) to that of a subwavelength one with no re-
flection.

In our design, we choose the left waveguide width to
be 0.9λ0 and the center waveguide width to be 0.5λ0, as
shown in the inset in Fig. 3(b). The parameters that we
need are the insulator width of the right waveguide, w,
and the length of the center waveguide, l.

The width of the right waveguide can be chosen by
satisfying (9) (|LS22| = |RS11|). We find that this
corresponds to a right waveguide thickness of 0.16λ0.
The phase condition (10) then gives, after some sim-
plification through the use of the numerical value for kC,
l/λ0 = 0.1377 + 0.4861n.

To check our design, we calculated the reflection
coefficient for the structure shown in the inset of Fig.
3(b) using FDFD. We also calculated the reflection
coefficient through the use of the transfer matrix for-
malism in which we multiplied the transfer matrices for
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the right junction, TR, a center waveguide of length l,
TC, and the left junction, TL, to get the overall transfer
matrix T = TLTCTR. We did the calculations for two
different sets of

{

TR,TL

}

: one in which we used the scat-
tering matrices for the lossy junctions and another for the
lossless junctions. The center waveguide of length l had
loss in both cases, i.e., kC = (1.03 − i9.45 × 10−4)2π/λ0.

Figure 3(b) verifies that lossless junction models
are quite effective at modeling the waveguide dis-
continuities and the prediction of the length of the
center guide for zero reflection reached by their use,
l/λ0 = 0.1377 + 0.4861n, is very accurate. The lossy
junction model on the other hand gives results essen-
tially indistinguishable from the simulation results as
long as the two junctions are not very close to each other
(< 0.1λ0). When the junctions get very close, the cou-
pling of higher order non-propagating modes becomes
important and the single mode modeling we employed in
the construction of scattering matrices breaks down. For
such closely spaced junctions, the whole structure should
be treated as a single unit.

5. Gain-induced switches
In the previous sections, we have shown that passive

MDM plasmonic waveguide devices can efficiently ma-
nipulate light at the nanoscale. Another essential com-
ponent of optical integrated circuits is devices, such as
optical switches, that enable active light manipulation.
In this section, we demonstrate that optical gain provides
a mechanism for on/off switching in MDM plasmonic
waveguides. Previously, the use of media with optical
gain has been suggested as a means to compensate for
the material loss in the metal[29−35], to increase the res-
olution of negative-refractive-index near-field lenses[36],
and to control the group velocity of nanoscale plasmonic
waveguides[37].

Fig. 3. (a) Schematic diagram of modal propagation. The
left and right junctions are shown as boxes with an S matrix
description. The center waveguide is shown as a transmission
line of length l. (b) Reflection coefficient for w = 0.16λ0 as
a function of l/λ0 at λ0 = 1.55 µm calculated using FDFD
(circles). Transfer matrix calculations using lossy (solid line)
and lossless (dashed line) junction models are also plotted.

Fig. 4. (a) Transmission T (solid line) and reflection R
(dashed line) spectra of a gold-air-gold MDM plasmonic
waveguide side-coupled to a rectangular cavity (shown in the
inset) calculated using FDFD. Results are shown for w =
50 nm, d = 100 nm, a = 200 nm, and b = 280 nm. The
cavity is filled with InGaAsP, and there is no pumping of In-
GaAsP (ǫ = 11.38 − i0.1). (b) Same as (a), except that there
is pumping of InGaAsP (ǫ = 11.38 + i0.165).

We consider a subwavelength gold-air-gold MDM
plasmonic waveguide side-coupled to a rectangular
cavity[38,39] filled with an InGaAsP semiconductor gain
medium with dielectric permittivity ǫ = 11.38+iǫi (inset
of Fig. 4(a)).

Such a system consisting of a waveguide side-coupled
to a cavity, which supports a resonant mode of fre-
quency ω0, can be described using a temporal coupled-
mode theory[40]. Using coupled-mode theory it can be
shown that the transmission coefficient T and reflection
coefficient R of the system are given by[40]

T =
(ω − ω0)

2 + ( 1
τ0

− 1
τg

)2

(ω − ω0)2 + ( 1
τ0

− 1
τg

+ 1
τe

)2
, (11)

R =
( 1

τe
)2

(ω − ω0)2 + ( 1
τ0

− 1
τg

+ 1
τe

)2
, (12)

where ω is the frequency, 1/τe is the decay rate of the
field in the cavity due to the power escape through the
waveguide, 1/τ0 is the decay rate of the field due to the
material loss in the metal, and 1/τg is the growth rate
of the field due to the gain of the material in the cavity.
We observe that far from the resonant frequency ω0, the
cavity mode is not excited, and the incident waveguide
mode is completely transmitted. In addition, we observe
that when 1/τ0−1/τg ≫ 1/τe, there is very low reflection
and high transmission at resonance. In contrast, when
1/τ0 = 1/τg, the decay of the cavity field due to the
material loss in the metal is compensated by the growth
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of the field due to gain of the material filling the cav-
ity. In such a case, coupled-mode theory predicts that
there is complete reflection and no transmission, and the
device behaves essentially as if the metal were lossless.
In general, we find that there is excellent agreement be-
tween the results of coupled-mode theory and FDFD
simulations[18].

For the side-coupled structure (inset of Fig. 4(a)), the
InGaAsP medium filling the cavity is lossy (ǫi = −0.1)
in the absence of pumping. In this case, we have
1/τ0 − 1/τg ≫ 1/τe, so there is very low reflection and
high transmission at resonance. Figure 4(a) shows the
transmission T and reflection R spectra of the device in
the absence of pumping. We observe that an incident
optical wave in the MDM plasmonic waveguide remains
essentially undisturbed by the presence of the cavity.
There is almost complete transmission of the incident
optical wave through the MDM plasmonic waveguide
(T ≃ 0.86), while almost all the remaining portion of the
incident optical power is absorbed in the cavity.

If the semiconductor material filling the cavity is
pumped, ǫi increases as a function of pump power and
eventually becomes positive when the medium exhibits
gain. In the presence of pumping, the transmission of
an incident optical wave decreases. When the pump-
ing is such that the material gain in the medium filling
the cavity compensates the material loss in the metal
(1/τ0 = 1/τg), the incident optical wave is completely
reflected at resonance. For the side-coupled structure
of Fig. 4(a), complete reflection is obtained for ǫi ≃
0.165 which corresponds to a gain coefficient of g ≃ 2 ×
103 cm−1. Such a gain coefficient is within the limits
of currently available semiconductor-based optical gain
media[33,41,42]. Figure 4(b) shows the transmission T
and reflection R spectra of the device for ǫi = 0.165. We
find that these spectra are very similar to those of the
lossless metal case[18]. Note that, even though the MDM
plasmonic waveguide is lossy, the propagation length of
its fundamental propagating mode is much longer than
the waveguide-cavity interaction length, which is approx-
imately equal to the cavity length a. Thus, even though
gain media are incorporated in only a selected device
area, the device behaves as if the metal were lossless.

Thus, such a side-coupled structure in which the cav-
ity is filled with a gain medium, can act as an extremely
compact gain-assisted switch for MDM plasmonic waveg-
uides, in which the on state corresponds to the absence of
pumping of the semiconductor material filling the cavity,
and the off state corresponds to pumping the material
in the cavity with an intensity which compensates the
material loss in the metal.

The switching time in such a device will be limited by
the carrier lifetime which is on the order of 0.2 ns[41]. In
addition, we estimate that the pumping power in the off
state will be on the order of 50 µW, by considering the
required carrier density for gain coefficient[41] and assum-
ing a device thickness of half a wavelength. Moreover, the
device proposed here may also function as a plasmonic
laser when the gain coefficient g reaches above 2.16 ×
103 cm−1. At such a gain, the cavity loss, including
both the material loss and coupling to the waveguide, is
compensated by the gain.

6. Compact couplers between dielectric slab
waveguides and MDM plasmonic waveguides

In MDM plasmonic waveguides, the propagation length
of the fundamental subwavelength propagating mode is
limited by material loss in the metal and is orders of
tens of micrometers at frequencies around the optical
communication wavelength (λ0 = 1.55 µm)[9,43]. Thus
for longer distances it is expected that conventional di-
electric waveguides with diffraction-limited optical mode
confinement will be used to carry the optical signal.
The propagation length in dielectric waveguides is pri-
marily limited by fabrication related disorders and is
orders of magnitude larger than the propagation length
of MDM plasmonic waveguides[44]. In short, it is ex-
pected that MDM waveguides will be used to address
subwavelength optoelectronic devices, while conventional
dielectric waveguides will be used to transfer the optical
signal over distances longer than a few tens of microns.
Couplers between MDM and dielectric waveguides will
therefore be essential components for most applications
involving the use of MDM waveguides such as optical
interconnects. In this section, we investigate the cou-
pling of high-index contrast dielectric slab waveguides
to MDM plasmonic waveguides. Our focus here is on
coupling structures either without any transition region
between the dielectric and plasmonic waveguides, or with
submicron scale transition regions. In previous stud-
ies, efficient coupling between dielectric and plasmonic
waveguides has been demonstrated for a few microns
long coupling regions[45−47].

We define the transmission efficiency of the coupler Tij

as the ratio of the transmitted power into the fundamen-
tal mode of the output waveguide j, and of the incident
power of the fundamental mode of the input waveguide i.
We also note that due to reciprocity[27] the transmission
efficiency from the dielectric to the plasmonic waveguide
Tdp is equal to the transmission efficiency from the plas-
monic to the dielectric waveguide Tpd.

We first consider a coupler created by simply placing
an air-silicon-air dielectric slab waveguide terminated
flat at the exit end of a silver-air-silver MDM plasmonic

Fig. 5. Transmission efficiency of a coupler between a dielec-
tric and a MDM waveguide as a function of the width of the
plasmonic waveguide wp at λ0 = 1.55 µm calculated using
FDFD. The coupler, created by placing the dielectric waveg-
uide terminated flat at the exit end of the MDM waveguide,
is shown in the inset. Results are shown for wd = 300 nm.
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waveguide (inset of Fig. 5). Figure 5 shows the cou-
pler transmission Tdp(= Tpd) as a function of the width
of the plasmonic waveguide wp at λ0 = 1.55 µm. The
width of the dielectric waveguide is wd = 300 nm, which
approximately corresponds to the optimal width of a sil-
icon slab waveguide surrounded by air that achieves the
minimum TM modal size. We observe that the transmis-
sion efficiency in this coupler is high and the maximum
transmission of 68% is obtained for wp ≃ 40 nm. The
transmission is also weakly dependent on wp for wp > 20
nm. At the limit wp → 0, the transmission goes to zero
as expected.

In general, we find that for a given width of the sub-
wavelength MDM waveguide wp, there is an optimum
width of the dielectric waveguide wd which maximizes the
transmission efficiency and vice versa. We also find that
for a given wd the optimum wp is significantly smaller
than wd. This is due to the fact that a subwavelength
MDM waveguide collects light from an area significantly
larger than its cross-sectional area[48]. More precisely,
the transmission cross section of a MDM waveguide (in
the unit of length in two dimensions), defined as the
transmitted power into the waveguide normalized by the
incident plane wave power flux, is significantly larger
than its geometric cross-sectional area. As an example,
the transmission cross section of a MDM waveguide with
wp = 50 nm is ∼ 185 nm at λ0 = 1.55 µm. On the other
hand, the transmission cross section of dielectric waveg-
uides is approximately equal to their geometrical area.
For example, for a waveguide consisting of a silicon slab
surrounded by air with wd = 320 nm, the transmission
cross section is ∼340 nm at λ0 = 1.55 µm.

To further increase the transmission, we design a
coupler consisting of a multisection taper shown in Fig.
6(a). Such tapers, consisting of a number of waveguide
sections, have been used as couplers between dielectric
waveguides with highly different widths[49−51]. It has
been shown theoretically and confirmed experimentally
that they can be designed to have higher transmission
efficiency than conventional tapers of the same length
with linear or parabolic shapes[50,51]. The coupler design
used here consists of a number of dielectric waveguide
and MDM waveguide sections. The widths of these sec-
tions are optimized using a genetic global optimization
algorithm in combination with FDFD. More specifically,
we use a microgenetic algorithm which has been shown to
reach the near-optimal region much faster than large pop-
ulation genetic algorithms[52,53]. Using this approach, we
designed a coupler with 93% transmission efficiency for
wd = 300 nm and wp = 50 nm at λ0 = 1.55 µm. In
this design we use 4 dielectric waveguide sections and 4
MDM waveguide sections. The lengths of all waveguide
sections are li = 50 nm. Their widths w1, w2, · · ·, w8 are
optimized using the microgenetic algorithm, while the
number of dielectric and MDM sections as well as their
lengths are kept fixed during the optimization process.
The designed coupler is extremely compact with a total
length of 400 nm.

Both the simple coupler of Fig. 5 and the multisection
taper of Fig. 6(a) were optimized at a single wavelength
of λ0 = 1.55 µm. Figure 6(b) shows the transmission
efficiency of these couplers as a function of wavelength.
We observe that in both cases the transmission efficiency

Fig. 6. (a) Schematic of a coupler consisting of a multisection
taper. (b) Transmission efficiency as a function of wavelength
for the couplers of Fig. 5 (solid line) and Fig. 6(a) (dashed
line). In both cases the coupler parameters are optimized at
λ0 = 1.55 µm.

is close to its maximum value in a broad range of wave-
lengths. This is due to the fact that in both cases the high
transmission efficiency is not associated with any strong
resonances. Similar broadband responses are observed
in couplers between dielectric waveguides with highly
different widths based on multisection tapers[50,51] and
in multisection impedance matching transformers used
in microwave circuits[27].

7. Conclusions
In summary, we first showed that, even though MDM

plasmonic waveguides are lossy, bends and splitters with
no additional loss can be designed over a very broad wave-
length range that extends from DC to near-infrared, if
the waveguide width d is small enough. We note that this
remarkable effect is not observed in other light-guiding
structures such as high-index contrast or photonic crystal
waveguides. We also introduced mode converters with no
additional loss which couple MDM plasmonic waveguides
with different widths.

In addition, we demonstrated that optical gain pro-
vides a mechanism for on/off switching in MDM plas-
monic waveguides. The proposed extremely compact
gain-assisted plasmonic switch consists of a MDM plas-
monic waveguide side-coupled to a cavity filled with a
semiconductor gain material. The on state corresponds
to the absence of pumping of the semiconductor mate-
rial filling the cavity, and the off state corresponds to
pumping the material in the cavity with an intensity
which compensates the material loss in the metal. The
required gain coefficients are within the limits of cur-
rently available semiconductor-based optical gain media.

Finally, we showed that, despite the large difference
between the modal sizes of dielectric and MDM plas-
monic waveguides, a simple coupler created by placing
the dielectric waveguide terminated flat at the exit end
of the MDM waveguide without any tapering could be
designed to have a transmission efficiency of ∼70% at
the optical communication wavelength. We also showed
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that the transmission efficiency of the coupler could be
increased to 93% by using a 400-nm-long multisection
taper. In both cases the transmission was found to be
broadband.
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